Completeness for Symmetric Two-Party Functionalities: Revisited

Completeness for Symmetric Two-Party Functionalities: Revisited Understanding the minimal assumptions required for carrying out cryptographic tasks is one of the fundamental goals of theoretic cryptography. A rich body of work has been dedicated to understanding the complexity of cryptographic tasks in the context of (semi-honest) secure two-party computation. Much of this work has focused on the characterization of trivial and complete functionalities (resp., functionalities that can be securely implemented unconditionally, and functionalities that can be used to securely compute all functionalities). Most previous works define reductions via an ideal implementation of the functionality; i.e., f reduces to g if one can implement f using a black-box (or oracle) that computes the function g and returns the output to both parties. Such a reduction models the computation of f as an atomic operation. However, in the real world, protocols proceed in rounds, and the output is not learned by the parties simultaneously. In this paper, we show that this distinction is significant. Specifically, we show that there exist symmetric functionalities (where both parties receive the same outcome) that are neither trivial nor complete under “black-box reductions,” and yet the existence of a constant-round protocol for securely computing such a functionality implies infinitely often oblivious transfer (meaning that it is secure for infinitely many values of the security parameter). In light of the above, we propose an alternative definitional infrastructure for studying the triviality and completeness of functionalities. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Cryptology Springer Journals

Completeness for Symmetric Two-Party Functionalities: Revisited

Loading next page...
 
/lp/springer_journal/completeness-for-symmetric-two-party-functionalities-revisited-dda8IKXyYs
Publisher
Springer US
Copyright
Copyright © 2017 by International Association for Cryptologic Research
Subject
Computer Science; Coding and Information Theory; Computational Mathematics and Numerical Analysis; Combinatorics; Probability Theory and Stochastic Processes; Communications Engineering, Networks
ISSN
0933-2790
eISSN
1432-1378
D.O.I.
10.1007/s00145-017-9267-7
Publisher site
See Article on Publisher Site

Abstract

Understanding the minimal assumptions required for carrying out cryptographic tasks is one of the fundamental goals of theoretic cryptography. A rich body of work has been dedicated to understanding the complexity of cryptographic tasks in the context of (semi-honest) secure two-party computation. Much of this work has focused on the characterization of trivial and complete functionalities (resp., functionalities that can be securely implemented unconditionally, and functionalities that can be used to securely compute all functionalities). Most previous works define reductions via an ideal implementation of the functionality; i.e., f reduces to g if one can implement f using a black-box (or oracle) that computes the function g and returns the output to both parties. Such a reduction models the computation of f as an atomic operation. However, in the real world, protocols proceed in rounds, and the output is not learned by the parties simultaneously. In this paper, we show that this distinction is significant. Specifically, we show that there exist symmetric functionalities (where both parties receive the same outcome) that are neither trivial nor complete under “black-box reductions,” and yet the existence of a constant-round protocol for securely computing such a functionality implies infinitely often oblivious transfer (meaning that it is secure for infinitely many values of the security parameter). In light of the above, we propose an alternative definitional infrastructure for studying the triviality and completeness of functionalities.

Journal

Journal of CryptologySpringer Journals

Published: Nov 2, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off