Completely Hyperexpansive Operator Tuples

Completely Hyperexpansive Operator Tuples The notion of a completely hyperexpansive operator on a Hilbert space is generalized to that of a completely hyperexpansive operator tuple, which in some sense turns out to be antithetical to the notion of a subnormal operator tuple with contractive coordinates. The countably many negativity conditions characterizing a completely hyperexpansive operator tuple are closely related to the Levy–Khinchin representation in the theory of harmonic analysis on semigroups. The interplay between the theories of positive and negative definite functions on semigroups forces interesting connections between the classes of subnormal and completely hyperexpansive operator tuples. Further, the several–variable generalization allows for a stimulating interaction with the multiparameter spectral theory. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Positivity Springer Journals

Completely Hyperexpansive Operator Tuples

Loading next page...
1
 
/lp/springer_journal/completely-hyperexpansive-operator-tuples-145ra4gABB
Publisher
Springer Journals
Copyright
Copyright © 1999 by Kluwer Academic Publishers
Subject
Mathematics; Fourier Analysis; Operator Theory; Potential Theory; Calculus of Variations and Optimal Control; Optimization; Econometrics
ISSN
1385-1292
eISSN
1572-9281
D.O.I.
10.1023/A:1009719803199
Publisher site
See Article on Publisher Site

Abstract

The notion of a completely hyperexpansive operator on a Hilbert space is generalized to that of a completely hyperexpansive operator tuple, which in some sense turns out to be antithetical to the notion of a subnormal operator tuple with contractive coordinates. The countably many negativity conditions characterizing a completely hyperexpansive operator tuple are closely related to the Levy–Khinchin representation in the theory of harmonic analysis on semigroups. The interplay between the theories of positive and negative definite functions on semigroups forces interesting connections between the classes of subnormal and completely hyperexpansive operator tuples. Further, the several–variable generalization allows for a stimulating interaction with the multiparameter spectral theory.

Journal

PositivitySpringer Journals

Published: Oct 16, 2004

References

  • On completely hyperexpansive operators
    Athavale, A.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off