Complete rescue of the nude mutant phenotype by a wild-type Foxn1 transgene

Complete rescue of the nude mutant phenotype by a wild-type Foxn1 transgene In this paper we describe the production and analysis of mice carrying a 110-kb transgene that encompasses the wild-type Foxn1 genomic locus. Mutations in Foxn1 cause the nude phenotype. We show that in the hair follicles, transgenic mice with increased Foxn1 gene dosage exhibited increased Foxn1 expression that was restricted correctly to the nascent, post-mitotic cells of the differentiating hair cortex and hair cuticle lineages. We also demonstrate for the first time that a Foxn1 transgene rescues completely both the hair follicle and the thymus defects in animals that are also homozygous for the nude mutation at the endogenous Foxn1 locus, causing the development of a full coat of hair and a normal population of peripheral blood T lymphocytes. We conclude that sufficient cis-acting regulatory information resides within this 110-kb transgene to direct reliable and appropriate tissue-specific expression of the Foxn1 gene. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mammalian Genome Springer Journals

Complete rescue of the nude mutant phenotype by a wild-type Foxn1 transgene

Loading next page...
 
/lp/springer_journal/complete-rescue-of-the-nude-mutant-phenotype-by-a-wild-type-foxn1-oos0PET8m6
Publisher
Springer-Verlag
Copyright
Copyright © 2002 by Springer-Verlag New York Inc.
Subject
Life Sciences; Cell Biology; Anatomy; Zoology
ISSN
0938-8990
eISSN
1432-1777
D.O.I.
10.1007/s00335-001-3079-6
Publisher site
See Article on Publisher Site

Abstract

In this paper we describe the production and analysis of mice carrying a 110-kb transgene that encompasses the wild-type Foxn1 genomic locus. Mutations in Foxn1 cause the nude phenotype. We show that in the hair follicles, transgenic mice with increased Foxn1 gene dosage exhibited increased Foxn1 expression that was restricted correctly to the nascent, post-mitotic cells of the differentiating hair cortex and hair cuticle lineages. We also demonstrate for the first time that a Foxn1 transgene rescues completely both the hair follicle and the thymus defects in animals that are also homozygous for the nude mutation at the endogenous Foxn1 locus, causing the development of a full coat of hair and a normal population of peripheral blood T lymphocytes. We conclude that sufficient cis-acting regulatory information resides within this 110-kb transgene to direct reliable and appropriate tissue-specific expression of the Foxn1 gene.

Journal

Mammalian GenomeSpringer Journals

Published: Feb 27, 2014

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off