Complete genome sequence of the siphoviral bacteriophage Βϕ-R3177, which lyses an OXA-66-producing carbapenem-resistant Acinetobacter baumannii isolate

Complete genome sequence of the siphoviral bacteriophage Βϕ-R3177, which lyses an... In recent years, antimicrobial resistance has become a major medical threat worldwide. Among these threats, the rapid increase in carbapenem-resistant Acinetobacter baumannii (CRAB) is a particularly challenging global issue in the health care setting. In this study, a novel lytic A. baumannii phage, Βϕ-R3177, infecting carbapenem-resistant A. baumannii strains was isolated from sewage samples at a hospital. The morphology of the phage as assessed by transmission electron microscopy (TEM) indicated that it belongs to the family Siphoviridae within the order Caudovirales . It has a linear double-stranded DNA genome of 47,575 bp with a G+C content of 39.83 %. Eighty open reading frames (ORFs) were predicted; however, only 14 ORFs were annotated as encoding functional proteins, while most of the ORFs encoded hypothetical proteins. Among the total ORFs of the phage genome, no toxin-related genes were detected. A bioinformatics analysis showed that the whole genome sequence of phage Βϕ-R3177 exhibited 62 % sequence similarity to that of Acinetobacter phage Βϕ-B1252, but there was no homology seen with other phages. Physiological characteristics, such as one-step growth properties, pH and temperature stability, and host cell lysis activity showed this phage has high stability and lytic activity against host bacteria and therefore has potential applicability as an antibacterial agent to control pathogens in the hospital environment. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Virology Springer Journals

Complete genome sequence of the siphoviral bacteriophage Βϕ-R3177, which lyses an OXA-66-producing carbapenem-resistant Acinetobacter baumannii isolate

Loading next page...
 
/lp/springer_journal/complete-genome-sequence-of-the-siphoviral-bacteriophage-r3177-which-AMBMSrdCK3
Publisher
Springer Journals
Copyright
Copyright © 2015 by Springer-Verlag Wien
Subject
Biomedicine; Virology; Medical Microbiology; Infectious Diseases
ISSN
0304-8608
eISSN
1432-8798
D.O.I.
10.1007/s00705-015-2604-y
Publisher site
See Article on Publisher Site

Abstract

In recent years, antimicrobial resistance has become a major medical threat worldwide. Among these threats, the rapid increase in carbapenem-resistant Acinetobacter baumannii (CRAB) is a particularly challenging global issue in the health care setting. In this study, a novel lytic A. baumannii phage, Βϕ-R3177, infecting carbapenem-resistant A. baumannii strains was isolated from sewage samples at a hospital. The morphology of the phage as assessed by transmission electron microscopy (TEM) indicated that it belongs to the family Siphoviridae within the order Caudovirales . It has a linear double-stranded DNA genome of 47,575 bp with a G+C content of 39.83 %. Eighty open reading frames (ORFs) were predicted; however, only 14 ORFs were annotated as encoding functional proteins, while most of the ORFs encoded hypothetical proteins. Among the total ORFs of the phage genome, no toxin-related genes were detected. A bioinformatics analysis showed that the whole genome sequence of phage Βϕ-R3177 exhibited 62 % sequence similarity to that of Acinetobacter phage Βϕ-B1252, but there was no homology seen with other phages. Physiological characteristics, such as one-step growth properties, pH and temperature stability, and host cell lysis activity showed this phage has high stability and lytic activity against host bacteria and therefore has potential applicability as an antibacterial agent to control pathogens in the hospital environment.

Journal

Archives of VirologySpringer Journals

Published: Dec 1, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off