Complement of forms

Complement of forms The notions of the parallel sum, the parallel difference, and the complement of two nonnegative sesquilinear forms were introduced and studied by Hassi, Sebestyé and de Snoo in Hassi et al. (Oper Theory Adv Appl 198:211–227, 2010) and Hassi et al. (J Funct Anal 257(12):3858–3894, 2009). In this paper we continue these investigations. The Galois correspondence induced by the map $${\mathfrak{m} \mapsto \mathfrak{m}_\mathfrak{t}}$$ (where $${\mathfrak{m}_\mathfrak{t}}$$ denotes the $${\mathfrak{t}}$$ -complement of $${\mathfrak{m}}$$ ) is also studied. Inspired by the work of Eriksson and Leutwiler Eriksson and Leutwiler (Math Ann 274:301–317, 1986), we introduce the notion of quasi-unit for nonnegative sesquilinear forms. The quasi-units are characterized by means of the complement and the disjoint part. It is also shown that the $${{\mathfrak{t}}}$$ -quasi-units coincide with the extreme points of the convex set $${\mathfrak{z}: 0 \leq \mathfrak{z} \leq \mathfrak{t}\}}$$ . Positivity Springer Journals

Complement of forms

Loading next page...
Springer Basel
Copyright © 2011 by Springer Basel AG
Mathematics; Fourier Analysis; Operator Theory; Potential Theory; Calculus of Variations and Optimal Control; Optimization; Econometrics
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial