Competition between intragranular and intergranular deformation mechanisms in ODS ferritic steels during hot deformation at high strain rate

Competition between intragranular and intergranular deformation mechanisms in ODS ferritic steels... Oxide Dispersed Strengthened (ODS) ferritic stainless steels present well-known fine grains microstructures where dislocation movement is hindered by a dense precipitation of nano-oxides particles. Previous research, on the thermomechanical behavior at high temperature and strain rates, was focused on torsion tests (Karch in J Nucl Mater 459:53–61, 2014). Considering texture evolution and grain shape as indicators of the intragranular dislocation glide activity, it was shown that, for high temperature and strain rate, intragranular deformation was in competition with intergranular accommodation. The latter phenomenon was related to early damaging at grain boundaries. The occurrence of a transition phenomenon from an intragranular to an intergranular deformation mechanism, with increasing temperature, was recently confirmed by neutron diffraction spectroscopy (Stoica in Nature Commun 5:5178, 2014). In the present paper, hot extrusion (HE) tests are performed, avoiding damage due to the high stress triaxiality, and allowing further investigation of intragranular and intergranular plasticity at large strains. Three ferritic steels exhibiting various precipitation size and density were hot extruded. Microstructure evolution at different stages of deformation is investigated using the Electron Back-Scattered Diffraction (EBSD) technique. After extrusion at 1373 K (1100 °C), the microstructure of ODS steels consists of a mixture of small round shape grains and larger elongated grains containing low-angle grain boundaries. Texture measurements show the appearance of the α-fiber (<110>//extrusion direction) and an increase in its intensity during the extrusion process in the larger grains. The fragmentation of the large elongated grains by Continuous Dynamic Recrystallization (CDRX) partially occurs in ODS materials depending on precipitation reinforcement. For smaller grains, plastic deformation has no effect on crystallographic orientation and grain shape, indicating a grain boundary accommodation phenomenon as the major deformation mechanism. Precipitation density not only impacts the intragranular dislocation glide activity, but also reduces CDRX kinetics in coarse grains. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Materials Science Springer Journals

Competition between intragranular and intergranular deformation mechanisms in ODS ferritic steels during hot deformation at high strain rate

Loading next page...
 
/lp/springer_journal/competition-between-intragranular-and-intergranular-deformation-hftprgpWC0
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer Science+Business Media, LLC
Subject
Materials Science; Materials Science, general; Characterization and Evaluation of Materials; Polymer Sciences; Continuum Mechanics and Mechanics of Materials; Crystallography and Scattering Methods; Classical Mechanics
ISSN
0022-2461
eISSN
1573-4803
D.O.I.
10.1007/s10853-017-1730-1
Publisher site
See Article on Publisher Site

Abstract

Oxide Dispersed Strengthened (ODS) ferritic stainless steels present well-known fine grains microstructures where dislocation movement is hindered by a dense precipitation of nano-oxides particles. Previous research, on the thermomechanical behavior at high temperature and strain rates, was focused on torsion tests (Karch in J Nucl Mater 459:53–61, 2014). Considering texture evolution and grain shape as indicators of the intragranular dislocation glide activity, it was shown that, for high temperature and strain rate, intragranular deformation was in competition with intergranular accommodation. The latter phenomenon was related to early damaging at grain boundaries. The occurrence of a transition phenomenon from an intragranular to an intergranular deformation mechanism, with increasing temperature, was recently confirmed by neutron diffraction spectroscopy (Stoica in Nature Commun 5:5178, 2014). In the present paper, hot extrusion (HE) tests are performed, avoiding damage due to the high stress triaxiality, and allowing further investigation of intragranular and intergranular plasticity at large strains. Three ferritic steels exhibiting various precipitation size and density were hot extruded. Microstructure evolution at different stages of deformation is investigated using the Electron Back-Scattered Diffraction (EBSD) technique. After extrusion at 1373 K (1100 °C), the microstructure of ODS steels consists of a mixture of small round shape grains and larger elongated grains containing low-angle grain boundaries. Texture measurements show the appearance of the α-fiber (<110>//extrusion direction) and an increase in its intensity during the extrusion process in the larger grains. The fragmentation of the large elongated grains by Continuous Dynamic Recrystallization (CDRX) partially occurs in ODS materials depending on precipitation reinforcement. For smaller grains, plastic deformation has no effect on crystallographic orientation and grain shape, indicating a grain boundary accommodation phenomenon as the major deformation mechanism. Precipitation density not only impacts the intragranular dislocation glide activity, but also reduces CDRX kinetics in coarse grains.

Journal

Journal of Materials ScienceSpringer Journals

Published: Oct 31, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off