Comparison on mineralization of 2,4,6-tribromophenol by UV-based advanced oxidation processes: UV/Na2S2O8 and UV/H2O2

Comparison on mineralization of 2,4,6-tribromophenol by UV-based advanced oxidation processes:... Mineralization of 2,4,6-tribromophenol (TBP) in water by UV-based oxidation processes (AOPs) including UV/H2O2 and UV/Na2S2O8 (UV/PS) was explored in this work. There was firstly systematically and comparatively an investigation of these two AOPs on the mineralization of TBP for toxicity change, mineralization efficiency and economic cost. The effects of oxidant concentration, initial TBP concentration and pH on TOC removal were investigated. The results indicated both UV-based oxidation systems had optimum oxidant concentration when the [oxidant]/[TBP] molar ratio reached 15/1. As TBP can absorb UV-254 nm, the initial TBP concentration can influence oxidant decomposition, and their mutual effects decide TOC removal efficiency. Raising pH from 3 to 11 inhibited the mineralization of TBP slightly in the UV/PS process while the mineralization rate reach its highest at pH 9 and decreased dramatically at pH 11. The effect of three inorganic ions on the efficiency of these UV-based AOPs was investigated, and the results were in the order NO 3 −  > HCO 3 −  > Cl−. Toxicity tests with activated sludge showed that oxidation processes can effectively reduce the toxicity of TBP. BOD measurements also revealed that biodegradability improved with both oxidation processes while UV/PS performed better. According to the calculation of the two UV-based AOPs, UV/PS is the much more effective and economic way. However, the formation of BrO 3 − in the UV/PS system will limit its application in treating wastewater containing brominated organic pollutants. Research on Chemical Intermediates Springer Journals

Comparison on mineralization of 2,4,6-tribromophenol by UV-based advanced oxidation processes: UV/Na2S2O8 and UV/H2O2

Loading next page...
Springer Netherlands
Copyright © 2016 by Springer Science+Business Media Dordrecht
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial