Comparison of Voltage-activated Cl− Channels in Rat Parotid Acinar Cells with ClC-2 in a Mammalian Expression System

Comparison of Voltage-activated Cl− Channels in Rat Parotid Acinar Cells with ClC-2 in a... Rat parotid acinar cells express Cl− currents that are activated in a time-dependent manner by hyperpolarized potentials. ClC-2, a member of the ClC gene family, codes for a voltage-gated, inward rectifying anion channel when expressed in Xenopus oocytes. In the present study, we found that cDNA derived from individual parotid acinar cells contained sequence identical to that reported for ClC-2 in rat brain and heart. A polyclonal antibody generated against the N-terminal cytoplasmic domain of ClC-2 recognized an approximately 100 kD protein on western blots of both brain and parotid gland. ClC-2 expressed in oocytes has different kinetics from the currents found in parotid acinar cells. Since the ClC-2 channel was cloned from and its transcripts are expressed in mammalian tissue, we compared the channel properties of acinar cells to a mammalian expression system. We expressed ClC-2 channels in human embryonic kidney cells, HEK 293, using recombinant ClC-2 DNA and ClC-2 DNA fused with DNA coding for jellyfish green fluorescent protein (GFP). Confocal microscopy revealed that the expressed ClC-2-GFP chimera protein localized to the plasma membrane. Whole cell Cl− currents from HEK 293 cells expressing ClC-2-GFP were similar, if not identical, to the Cl− currents recorded from cells transfected with ClC-2 cDNA (no GFP). The voltage-dependence and kinetics of ClC-2 channels expressed in HEK 293 cells were quite similar to those in acinar cells. Channels in parotid acinar and HEK 293 cells activated at more positive membrane potentials and with a faster time course than the channels expressed in Xenopus oocytes. In summary, we found that ClC-2 message and protein are expressed in salivary cells and that the properties of voltage-activated, inward rectifying Cl− channels in acinar cells are similar to those generated by the ClC-2-GFP construct expressed in HEK 293 cells. The properties of the ClC-2 anion channel seem to be dependent on the type of cell background in which it is expressed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Comparison of Voltage-activated Cl− Channels in Rat Parotid Acinar Cells with ClC-2 in a Mammalian Expression System

Loading next page...
 
/lp/springer_journal/comparison-of-voltage-activated-cl-channels-in-rat-parotid-acinar-i2OPr2C0i6
Publisher
Springer-Verlag
Copyright
Copyright © Inc. by 1998 Springer-Verlag New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s002329900373
Publisher site
See Article on Publisher Site

Abstract

Rat parotid acinar cells express Cl− currents that are activated in a time-dependent manner by hyperpolarized potentials. ClC-2, a member of the ClC gene family, codes for a voltage-gated, inward rectifying anion channel when expressed in Xenopus oocytes. In the present study, we found that cDNA derived from individual parotid acinar cells contained sequence identical to that reported for ClC-2 in rat brain and heart. A polyclonal antibody generated against the N-terminal cytoplasmic domain of ClC-2 recognized an approximately 100 kD protein on western blots of both brain and parotid gland. ClC-2 expressed in oocytes has different kinetics from the currents found in parotid acinar cells. Since the ClC-2 channel was cloned from and its transcripts are expressed in mammalian tissue, we compared the channel properties of acinar cells to a mammalian expression system. We expressed ClC-2 channels in human embryonic kidney cells, HEK 293, using recombinant ClC-2 DNA and ClC-2 DNA fused with DNA coding for jellyfish green fluorescent protein (GFP). Confocal microscopy revealed that the expressed ClC-2-GFP chimera protein localized to the plasma membrane. Whole cell Cl− currents from HEK 293 cells expressing ClC-2-GFP were similar, if not identical, to the Cl− currents recorded from cells transfected with ClC-2 cDNA (no GFP). The voltage-dependence and kinetics of ClC-2 channels expressed in HEK 293 cells were quite similar to those in acinar cells. Channels in parotid acinar and HEK 293 cells activated at more positive membrane potentials and with a faster time course than the channels expressed in Xenopus oocytes. In summary, we found that ClC-2 message and protein are expressed in salivary cells and that the properties of voltage-activated, inward rectifying Cl− channels in acinar cells are similar to those generated by the ClC-2-GFP construct expressed in HEK 293 cells. The properties of the ClC-2 anion channel seem to be dependent on the type of cell background in which it is expressed.

Journal

The Journal of Membrane BiologySpringer Journals

Published: May 15, 1998

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off