Comparison of turbulent channel and pipe flows with varying Reynolds number

Comparison of turbulent channel and pipe flows with varying Reynolds number Single normal hot-wire measurements of the streamwise component of velocity were taken in fully developed turbulent channel and pipe flows for matched friction Reynolds numbers ranging from 1,000 ≤ Re τ ≤ 3,000. A total of 27 velocity profile measurements were taken with a systematic variation in the inner-scaled hot-wire sensor length l + and the hot-wire length-to-diameter ratio (l/d). It was observed that for constant l + = 22 and $$l/d \gtrsim 200$$ , the near-wall peak in turbulence intensity rises with Reynolds number in both channels and pipes. This is in contrast to Hultmark et al. in J Fluid Mech 649:103–113, (2010), who report no growth in the near-wall peak turbulence intensity for pipe flow with l + = 20. Further, it was found that channel and pipe flows have very similar streamwise velocity statistics and energy spectra over this range of Reynolds numbers, with the only difference observed in the outer region of the mean velocity profile. Measurements where l + and l/d were systematically varied reveal that l + effects are akin to spatial filtering and that increasing sensor size will lead to attenuation of an increasingly large range of small scales. In contrast, when l/d was insufficient, the measured energy is attenuated over a very broad range of scales. These findings are in agreement with similar studies in boundary layer flows and highlight the need to carefully consider sensor and anemometry parameters when comparing flows across different geometries and when drawing conclusions regarding the Reynolds number dependency of measured turbulence statistics. With an emphasis on accuracy, measurement resolution and wall proximity, these measurements are taken at comparable Reynolds numbers to currently available DNS data sets of turbulent channel/pipe flows and are intended to serve as a database for comparison between physical and numerical experiments. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Comparison of turbulent channel and pipe flows with varying Reynolds number

Loading next page...
 
/lp/springer_journal/comparison-of-turbulent-channel-and-pipe-flows-with-varying-reynolds-dn0Z1hkytw
Publisher
Springer-Verlag
Copyright
Copyright © 2011 by Springer-Verlag
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-011-1143-x
Publisher site
See Article on Publisher Site

Abstract

Single normal hot-wire measurements of the streamwise component of velocity were taken in fully developed turbulent channel and pipe flows for matched friction Reynolds numbers ranging from 1,000 ≤ Re τ ≤ 3,000. A total of 27 velocity profile measurements were taken with a systematic variation in the inner-scaled hot-wire sensor length l + and the hot-wire length-to-diameter ratio (l/d). It was observed that for constant l + = 22 and $$l/d \gtrsim 200$$ , the near-wall peak in turbulence intensity rises with Reynolds number in both channels and pipes. This is in contrast to Hultmark et al. in J Fluid Mech 649:103–113, (2010), who report no growth in the near-wall peak turbulence intensity for pipe flow with l + = 20. Further, it was found that channel and pipe flows have very similar streamwise velocity statistics and energy spectra over this range of Reynolds numbers, with the only difference observed in the outer region of the mean velocity profile. Measurements where l + and l/d were systematically varied reveal that l + effects are akin to spatial filtering and that increasing sensor size will lead to attenuation of an increasingly large range of small scales. In contrast, when l/d was insufficient, the measured energy is attenuated over a very broad range of scales. These findings are in agreement with similar studies in boundary layer flows and highlight the need to carefully consider sensor and anemometry parameters when comparing flows across different geometries and when drawing conclusions regarding the Reynolds number dependency of measured turbulence statistics. With an emphasis on accuracy, measurement resolution and wall proximity, these measurements are taken at comparable Reynolds numbers to currently available DNS data sets of turbulent channel/pipe flows and are intended to serve as a database for comparison between physical and numerical experiments.

Journal

Experiments in FluidsSpringer Journals

Published: Jun 25, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off