Comparison of the Water Transporting Properties of MIP and AQP1

Comparison of the Water Transporting Properties of MIP and AQP1 In this paper we compare the water-transport properties of Aquaporin (AQP1), a known water channel, and those of the 28 kD Major Intrinsic Protein of Lens (MIP), a protein with an undefined physiological role. To make the comparison as direct as possible we measured functional properties in Xenopus laevis oocytes injected with cRNAs coding for the appropriate protein. We measured the osmotic permeability, P f , (using rate of swelling) and the surface density of plasma membrane proteins (using freeze-fracture electron microscopy) in the same oocytes. Knowing both P f and the number of exogenously expressed proteins in the membrane, we estimated the single-molecule permeability to be 2.8 × 10−16 cm3/sec for MIP and 1.2 × 10−14 cm3/sec for AQP1. As a negative control, a mutant MIP, truncated at the carboxyl-terminal, was shown by western blotting to be expressed, but this protein resulted in no increase in either water permeability or particle density. (Interestingly, the truncated protein was glycosylated, while the complete MIP transcript was not.) Water transport by MIP had a higher activation energy (∼7 Kcal/mole) than water transport by AQP1 (∼2.5 Kcal/Mole) but a substantially lower activation energy than water flux across bare oolemma (∼20 Kcal/mole). Though the water-transport properties of MIP and AQP1 differ quantitatively, they are qualitatively quite similar. We conclude that MIP, like AQP1, forms water channels when expressed in oocytes. Thus water transport in the lens seems a plausible physiological role for MIP. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Comparison of the Water Transporting Properties of MIP and AQP1

Loading next page...
 
/lp/springer_journal/comparison-of-the-water-transporting-properties-of-mip-and-aqp1-fauNM7hxYR
Publisher
Springer-Verlag
Copyright
Copyright © 1997 by Springer-Verlag New York Inc.
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s002329900266
Publisher site
See Article on Publisher Site

Abstract

In this paper we compare the water-transport properties of Aquaporin (AQP1), a known water channel, and those of the 28 kD Major Intrinsic Protein of Lens (MIP), a protein with an undefined physiological role. To make the comparison as direct as possible we measured functional properties in Xenopus laevis oocytes injected with cRNAs coding for the appropriate protein. We measured the osmotic permeability, P f , (using rate of swelling) and the surface density of plasma membrane proteins (using freeze-fracture electron microscopy) in the same oocytes. Knowing both P f and the number of exogenously expressed proteins in the membrane, we estimated the single-molecule permeability to be 2.8 × 10−16 cm3/sec for MIP and 1.2 × 10−14 cm3/sec for AQP1. As a negative control, a mutant MIP, truncated at the carboxyl-terminal, was shown by western blotting to be expressed, but this protein resulted in no increase in either water permeability or particle density. (Interestingly, the truncated protein was glycosylated, while the complete MIP transcript was not.) Water transport by MIP had a higher activation energy (∼7 Kcal/mole) than water transport by AQP1 (∼2.5 Kcal/Mole) but a substantially lower activation energy than water flux across bare oolemma (∼20 Kcal/mole). Though the water-transport properties of MIP and AQP1 differ quantitatively, they are qualitatively quite similar. We conclude that MIP, like AQP1, forms water channels when expressed in oocytes. Thus water transport in the lens seems a plausible physiological role for MIP.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Feb 4, 2014

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off