Comparison of the h-index for different fields of research using bootstrap methodology

Comparison of the h-index for different fields of research using bootstrap methodology An important disadvantage of the h-index is that typically it cannot take into account the specific field of research of a researcher. Usually sample point estimates of the average and median h-index values for the various fields are reported that are highly variable and dependent of the specific samples and it would be useful to provide confidence intervals of prediction accuracy. In this paper we apply the non-parametric bootstrap technique for constructing confidence intervals for the h-index for different fields of research. In this way no specific assumptions about the distribution of the empirical h-index are required as well as no large samples since that the methodology is based on resampling from the initial sample. The results of the analysis showed important differences between the various fields. The performance of the bootstrap intervals for the mean and median h-index for most fields seems to be rather satisfactory as revealed by the performed simulation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quality & Quantity Springer Journals

Comparison of the h-index for different fields of research using bootstrap methodology

Loading next page...
 
/lp/springer_journal/comparison-of-the-h-index-for-different-fields-of-research-using-1L5OCQI7aO
Publisher
Springer Netherlands
Copyright
Copyright © 2012 by Springer Science+Business Media Dordrecht
Subject
Social Sciences, general; Methodology of the Social Sciences; Social Sciences, general
ISSN
0033-5177
eISSN
1573-7845
D.O.I.
10.1007/s11135-012-9785-1
Publisher site
See Article on Publisher Site

Abstract

An important disadvantage of the h-index is that typically it cannot take into account the specific field of research of a researcher. Usually sample point estimates of the average and median h-index values for the various fields are reported that are highly variable and dependent of the specific samples and it would be useful to provide confidence intervals of prediction accuracy. In this paper we apply the non-parametric bootstrap technique for constructing confidence intervals for the h-index for different fields of research. In this way no specific assumptions about the distribution of the empirical h-index are required as well as no large samples since that the methodology is based on resampling from the initial sample. The results of the analysis showed important differences between the various fields. The performance of the bootstrap intervals for the mean and median h-index for most fields seems to be rather satisfactory as revealed by the performed simulation.

Journal

Quality & QuantitySpringer Journals

Published: Sep 30, 2012

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off