Comparison of the activities of BM2 protein and its H19 and W23 mutants of influenza B virus with activities of M2 protein and its H37 and W41 mutants of influenza A virus

Comparison of the activities of BM2 protein and its H19 and W23 mutants of influenza B virus with... Co-expression of the BM2 protein with pH-sensitive HA reduces the conversion of HA to its low-pH conformation during transport to the cell surface in the same way as human M2 proteins. BM2 protein is capable of increasing vesicular pH by as much as 0.4 pH units. Mutation analysis showed that replacement of H19 in BM2 protein by A and L resulted in loss of activity, while M2, with the mutation H37A, remained active, but its severe toxicity was intolerable for cells. Whereas substitution of L or A for W23 abolished detectable activity of the BM2 channel, substitution of L for W41 in the M2 protein resulted in a functional ion channel but with reduced activity. W41 was not essential for functional activity of the M2 protein. Our results show some differences in the nature of the interaction of the histidine and tryptophan in the transmembrane domains of BM2 and M2 ion channels. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Virology Springer Journals

Comparison of the activities of BM2 protein and its H19 and W23 mutants of influenza B virus with activities of M2 protein and its H37 and W41 mutants of influenza A virus

Loading next page...
 
/lp/springer_journal/comparison-of-the-activities-of-bm2-protein-and-its-h19-and-w23-s6I640cyq8
Publisher
Springer Vienna
Copyright
Copyright © 2009 by Springer-Verlag
Subject
Biomedicine; Infectious Diseases; Medical Microbiology ; Virology
ISSN
0304-8608
eISSN
1432-8798
D.O.I.
10.1007/s00705-009-0483-9
Publisher site
See Article on Publisher Site

Abstract

Co-expression of the BM2 protein with pH-sensitive HA reduces the conversion of HA to its low-pH conformation during transport to the cell surface in the same way as human M2 proteins. BM2 protein is capable of increasing vesicular pH by as much as 0.4 pH units. Mutation analysis showed that replacement of H19 in BM2 protein by A and L resulted in loss of activity, while M2, with the mutation H37A, remained active, but its severe toxicity was intolerable for cells. Whereas substitution of L or A for W23 abolished detectable activity of the BM2 channel, substitution of L for W41 in the M2 protein resulted in a functional ion channel but with reduced activity. W41 was not essential for functional activity of the M2 protein. Our results show some differences in the nature of the interaction of the histidine and tryptophan in the transmembrane domains of BM2 and M2 ion channels.

Journal

Archives of VirologySpringer Journals

Published: Oct 1, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off