Comparison of the activities of BM2 protein and its H19 and W23 mutants of influenza B virus with activities of M2 protein and its H37 and W41 mutants of influenza A virus

Comparison of the activities of BM2 protein and its H19 and W23 mutants of influenza B virus with... Co-expression of the BM2 protein with pH-sensitive HA reduces the conversion of HA to its low-pH conformation during transport to the cell surface in the same way as human M2 proteins. BM2 protein is capable of increasing vesicular pH by as much as 0.4 pH units. Mutation analysis showed that replacement of H19 in BM2 protein by A and L resulted in loss of activity, while M2, with the mutation H37A, remained active, but its severe toxicity was intolerable for cells. Whereas substitution of L or A for W23 abolished detectable activity of the BM2 channel, substitution of L for W41 in the M2 protein resulted in a functional ion channel but with reduced activity. W41 was not essential for functional activity of the M2 protein. Our results show some differences in the nature of the interaction of the histidine and tryptophan in the transmembrane domains of BM2 and M2 ion channels. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Virology Springer Journals

Comparison of the activities of BM2 protein and its H19 and W23 mutants of influenza B virus with activities of M2 protein and its H37 and W41 mutants of influenza A virus

Loading next page...
 
/lp/springer_journal/comparison-of-the-activities-of-bm2-protein-and-its-h19-and-w23-s6I640cyq8
Publisher
Springer Vienna
Copyright
Copyright © 2009 by Springer-Verlag
Subject
Biomedicine; Infectious Diseases; Medical Microbiology ; Virology
ISSN
0304-8608
eISSN
1432-8798
D.O.I.
10.1007/s00705-009-0483-9
Publisher site
See Article on Publisher Site

Abstract

Co-expression of the BM2 protein with pH-sensitive HA reduces the conversion of HA to its low-pH conformation during transport to the cell surface in the same way as human M2 proteins. BM2 protein is capable of increasing vesicular pH by as much as 0.4 pH units. Mutation analysis showed that replacement of H19 in BM2 protein by A and L resulted in loss of activity, while M2, with the mutation H37A, remained active, but its severe toxicity was intolerable for cells. Whereas substitution of L or A for W23 abolished detectable activity of the BM2 channel, substitution of L for W41 in the M2 protein resulted in a functional ion channel but with reduced activity. W41 was not essential for functional activity of the M2 protein. Our results show some differences in the nature of the interaction of the histidine and tryptophan in the transmembrane domains of BM2 and M2 ion channels.

Journal

Archives of VirologySpringer Journals

Published: Oct 1, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off