Comparison of Responses to Electrical Stimulation and Whisker Deflection Using Two Different Voltage-sensitive Dyes in Mouse Barrel Cortex in Vivo

Comparison of Responses to Electrical Stimulation and Whisker Deflection Using Two Different... We examined the spatial structure of noise in optical recordings made with two commonly used voltage-sensitive dyes (RH795 and RH1691) in mouse barrel cortex in vivo, and determined that the signal-to-noise ratio of the two dyes was comparable when averaging over barrel-sized areas, or at single pixels distant from large blood vessels. We examined the spatiotemporal development of whisker- and electrically-evoked optical responses by quantifying the area of activated cortical surface as a function of time. Whisker and electrical stimuli activated cortical areas between 0.2–2.0 mm2 depending on intensity. More importantly, both types of activation recruited cortical area at similar rates and showed a linear relationship between the maximal activated area and the peak rate of increase of the activated area. We propose a general rule of supragranular cortical activation in which the initial spreading speed of the response determines the total activated area, independent of the type of activation. Finally, despite comparable single-response kinetics, we observed greater paired-pulse depression of whisker-evoked responses relative to electrically-evoked responses. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Comparison of Responses to Electrical Stimulation and Whisker Deflection Using Two Different Voltage-sensitive Dyes in Mouse Barrel Cortex in Vivo

Loading next page...
 
/lp/springer_journal/comparison-of-responses-to-electrical-stimulation-and-whisker-88TUkOXHuE
Publisher
Springer-Verlag
Copyright
Copyright © 2006 by Springer Science+Business Media, Inc.
Subject
Life Sciences; Human Physiology; Biochemistry, general
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-005-0828-6
Publisher site
See Article on Publisher Site

Abstract

We examined the spatial structure of noise in optical recordings made with two commonly used voltage-sensitive dyes (RH795 and RH1691) in mouse barrel cortex in vivo, and determined that the signal-to-noise ratio of the two dyes was comparable when averaging over barrel-sized areas, or at single pixels distant from large blood vessels. We examined the spatiotemporal development of whisker- and electrically-evoked optical responses by quantifying the area of activated cortical surface as a function of time. Whisker and electrical stimuli activated cortical areas between 0.2–2.0 mm2 depending on intensity. More importantly, both types of activation recruited cortical area at similar rates and showed a linear relationship between the maximal activated area and the peak rate of increase of the activated area. We propose a general rule of supragranular cortical activation in which the initial spreading speed of the response determines the total activated area, independent of the type of activation. Finally, despite comparable single-response kinetics, we observed greater paired-pulse depression of whisker-evoked responses relative to electrically-evoked responses.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Jan 1, 2005

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off