Comparison of residual stress determination using different crystal planes by short-wavelength X-ray diffraction in a friction-stir-welded aluminum alloy plate

Comparison of residual stress determination using different crystal planes by short-wavelength... A friction-stir-welded (FSW) AA7050-T7451 pre-stretched plate was investigated nondestructively using the short-wavelength X-ray diffraction method to study the distribution of internal residual stress. During the investigation, anomalous deviation of the diffraction peak with crystal plane Al (111) was observed causing large testing errors. The relationship between texture of the material and the anomalous deviation peaks of (111), (200) and (311) and the method to eliminate their effect on residual stress determination were investigated. In addition, the comparison of the average d 0 method and the in situ d 0 method was performed using the three crystal planes to solve the problem caused by gradient in weld structure. Results showed that the anomalous deviations of different crystal planes were different from each other in the directions deflected from the maximum pole density direction. The method of residual stress determination performed in the directions of maximum pole density proved to be helpful to reduce the effect of anomalous deviations. The values and profiles of the residual stress tested by this method using (111), (200) and (311) were identical. The results suggest that in situ d 0 method could be used to eliminate the influence of the difference in lattice spacing among different areas of the FSW plate. The errors of residual stress determination decreased with the increase in the diffracting plane crystal indices. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Materials Science Springer Journals

Comparison of residual stress determination using different crystal planes by short-wavelength X-ray diffraction in a friction-stir-welded aluminum alloy plate

Loading next page...
 
/lp/springer_journal/comparison-of-residual-stress-determination-using-different-crystal-yjUh90k5q7
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media, LLC
Subject
Materials Science; Materials Science, general; Characterization and Evaluation of Materials; Polymer Sciences; Continuum Mechanics and Mechanics of Materials; Crystallography and Scattering Methods; Classical Mechanics
ISSN
0022-2461
eISSN
1573-4803
D.O.I.
10.1007/s10853-017-1321-1
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial