Comparison of QuickBird Satellite Imagery and Airborne Imagery for Mapping Grain Sorghum Yield Patterns

Comparison of QuickBird Satellite Imagery and Airborne Imagery for Mapping Grain Sorghum Yield... Timely and accurate information on crop conditions obtained during the growing season is of vital importance for crop management. High spatial resolution satellite imagery has the potential for mapping crop growth variability and identifying problem areas within fields. The objectives of this study were to use QuickBird satellite imagery for mapping plant growth and yield patterns within grain sorghum fields as compared with airborne multispectral image data. A QuickBird 2.8-m four-band image covering a cropping area in south Texas, USA was acquired in the 2003 growing season. Airborne three-band imagery with submeter resolution was also collected from two grain sorghum fields within the satellite scene. Yield monitor data collected from the two fields were resampled to match the resolutions of the airborne imagery and the satellite imagery. The airborne imagery was related to yield at original submeter, 2.8 and 8.4 m resolutions and the QuickBird imagery was related to yield at 2.8 and 8.4 m resolutions. The extracted QuickBird images for the two fields were then classified into multiple zones using unsupervised classification and mean yields among the zones were compared. Results showed that grain yield was significantly related to both types of image data and that the QuickBird imagery had similar correlations with grain yield as compared with the airborne imagery at the 2.8 and 8.4 m resolutions. Moreover, the unsupervised classification maps effectively differentiated grain production levels among the zones. These results indicate that high spatial resolution satellite imagery can be a useful data source for determining plant growth and yield patterns for within-field crop management. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Precision Agriculture Springer Journals

Comparison of QuickBird Satellite Imagery and Airborne Imagery for Mapping Grain Sorghum Yield Patterns

Loading next page...
 
/lp/springer_journal/comparison-of-quickbird-satellite-imagery-and-airborne-imagery-for-TW0Z1WSaAV
Publisher
Springer Journals
Copyright
Copyright © 2006 by Springer Science + Business Media, Inc.
Subject
Life Sciences; Agriculture; Soil Science & Conservation; Remote Sensing/Photogrammetry; Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences; Atmospheric Sciences
ISSN
1385-2256
eISSN
1573-1618
D.O.I.
10.1007/s11119-005-6788-0
Publisher site
See Article on Publisher Site

Abstract

Timely and accurate information on crop conditions obtained during the growing season is of vital importance for crop management. High spatial resolution satellite imagery has the potential for mapping crop growth variability and identifying problem areas within fields. The objectives of this study were to use QuickBird satellite imagery for mapping plant growth and yield patterns within grain sorghum fields as compared with airborne multispectral image data. A QuickBird 2.8-m four-band image covering a cropping area in south Texas, USA was acquired in the 2003 growing season. Airborne three-band imagery with submeter resolution was also collected from two grain sorghum fields within the satellite scene. Yield monitor data collected from the two fields were resampled to match the resolutions of the airborne imagery and the satellite imagery. The airborne imagery was related to yield at original submeter, 2.8 and 8.4 m resolutions and the QuickBird imagery was related to yield at 2.8 and 8.4 m resolutions. The extracted QuickBird images for the two fields were then classified into multiple zones using unsupervised classification and mean yields among the zones were compared. Results showed that grain yield was significantly related to both types of image data and that the QuickBird imagery had similar correlations with grain yield as compared with the airborne imagery at the 2.8 and 8.4 m resolutions. Moreover, the unsupervised classification maps effectively differentiated grain production levels among the zones. These results indicate that high spatial resolution satellite imagery can be a useful data source for determining plant growth and yield patterns for within-field crop management.

Journal

Precision AgricultureSpringer Journals

Published: Dec 24, 2005

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off