Comparison of p-cycles and p-trees in a unified mathematical framework

Comparison of p-cycles and p-trees in a unified mathematical framework As high-speed networks grow in capacity, network protection becomes increasingly important. Recently, following interest in p-cycle protection, the related concept of p-trees has also been studied. In one line of work, a so-called “hierarchical tree” approach is studied and compared to p-cycles on some points. Some of the qualitative conclusions drawn, however, apply only to p-cycle designs consisting of a single Hamiltonian p-cycle. There are other confounding factors in the comparison between the two, such as the fact that, while the tree-based approach is not 100% restorable, p-cycles are. The tree and p-cycle networks are also designed by highly dissimilar methods. In addition, the claims regarding hierarchical trees seem to contradict earlier work, which found pre-planned trees to be significantly less capacity-efficient than p-cycles. These contradictory findings need to be resolved; a correct understanding of how these two architectures rank in terms of capacity efficiency is a basic issue of network science in this field. We therefore revisit the question in a definitive and novel way in which a unified optimal design framework compares minimum capacity, 100% restorable p-tree and p-cycle network designs. Results confirm the significantly higher capacity efficiency of p-cycles. Supporting discussion provides intuitive appreciation of why this is so, and the unified design framework contributes a further theoretical appreciation of how pre-planned trees and pre-connected cycles are related. In a novel further experiment we use the common optimal design model to study p-cycle/p-tree hybrid designs. This experiment answers the question “To what extent can a selection of trees compliment a cycle-based design, or vice-versa?” The results demonstrate the intrinsic merit of cycles over trees for pre-planned protection. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Photonic Network Communications Springer Journals

Comparison of p-cycles and p-trees in a unified mathematical framework

Loading next page...
 
/lp/springer_journal/comparison-of-p-cycles-and-p-trees-in-a-unified-mathematical-framework-xgaCHtN00k
Publisher
Springer US
Copyright
Copyright © 2007 by Springer Science+Business Media, LLC
Subject
Computer Science; Computer Communication Networks; Electrical Engineering; Characterization and Evaluation of Materials
ISSN
1387-974X
eISSN
1572-8188
D.O.I.
10.1007/s11107-007-0059-0
Publisher site
See Article on Publisher Site

Abstract

As high-speed networks grow in capacity, network protection becomes increasingly important. Recently, following interest in p-cycle protection, the related concept of p-trees has also been studied. In one line of work, a so-called “hierarchical tree” approach is studied and compared to p-cycles on some points. Some of the qualitative conclusions drawn, however, apply only to p-cycle designs consisting of a single Hamiltonian p-cycle. There are other confounding factors in the comparison between the two, such as the fact that, while the tree-based approach is not 100% restorable, p-cycles are. The tree and p-cycle networks are also designed by highly dissimilar methods. In addition, the claims regarding hierarchical trees seem to contradict earlier work, which found pre-planned trees to be significantly less capacity-efficient than p-cycles. These contradictory findings need to be resolved; a correct understanding of how these two architectures rank in terms of capacity efficiency is a basic issue of network science in this field. We therefore revisit the question in a definitive and novel way in which a unified optimal design framework compares minimum capacity, 100% restorable p-tree and p-cycle network designs. Results confirm the significantly higher capacity efficiency of p-cycles. Supporting discussion provides intuitive appreciation of why this is so, and the unified design framework contributes a further theoretical appreciation of how pre-planned trees and pre-connected cycles are related. In a novel further experiment we use the common optimal design model to study p-cycle/p-tree hybrid designs. This experiment answers the question “To what extent can a selection of trees compliment a cycle-based design, or vice-versa?” The results demonstrate the intrinsic merit of cycles over trees for pre-planned protection.

Journal

Photonic Network CommunicationsSpringer Journals

Published: Aug 17, 2007

References

  • Hierarchical protection tree scheme for failure recovery in mesh networks
    Shah-Heydari, S.; Yang, O.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off