Comparison of p-cycles and p-trees in a unified mathematical framework

Comparison of p-cycles and p-trees in a unified mathematical framework As high-speed networks grow in capacity, network protection becomes increasingly important. Recently, following interest in p-cycle protection, the related concept of p-trees has also been studied. In one line of work, a so-called “hierarchical tree” approach is studied and compared to p-cycles on some points. Some of the qualitative conclusions drawn, however, apply only to p-cycle designs consisting of a single Hamiltonian p-cycle. There are other confounding factors in the comparison between the two, such as the fact that, while the tree-based approach is not 100% restorable, p-cycles are. The tree and p-cycle networks are also designed by highly dissimilar methods. In addition, the claims regarding hierarchical trees seem to contradict earlier work, which found pre-planned trees to be significantly less capacity-efficient than p-cycles. These contradictory findings need to be resolved; a correct understanding of how these two architectures rank in terms of capacity efficiency is a basic issue of network science in this field. We therefore revisit the question in a definitive and novel way in which a unified optimal design framework compares minimum capacity, 100% restorable p-tree and p-cycle network designs. Results confirm the significantly higher capacity efficiency of p-cycles. Supporting discussion provides intuitive appreciation of why this is so, and the unified design framework contributes a further theoretical appreciation of how pre-planned trees and pre-connected cycles are related. In a novel further experiment we use the common optimal design model to study p-cycle/p-tree hybrid designs. This experiment answers the question “To what extent can a selection of trees compliment a cycle-based design, or vice-versa?” The results demonstrate the intrinsic merit of cycles over trees for pre-planned protection. Photonic Network Communications Springer Journals

Comparison of p-cycles and p-trees in a unified mathematical framework

Loading next page...
Springer US
Copyright © 2007 by Springer Science+Business Media, LLC
Computer Science; Computer Communication Networks; Electrical Engineering; Characterization and Evaluation of Materials
Publisher site
See Article on Publisher Site


  • Hierarchical protection tree scheme for failure recovery in mesh networks
    Shah-Heydari, S.; Yang, O.

You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial