Comparison of meshes, gels and ceramic for cartilage tissue engineering in vitro

Comparison of meshes, gels and ceramic for cartilage tissue engineering in vitro Full-thickness articular cartilage defects lack the capacity of healing because of lack of blood supply and lack of chondrocyte proliferation around the injury site. These factors contribute to the difficulty of getting good healing of cartilage defects. Autologous chondrocyte transplantation has been proposed as a method for treating cartilage defects using chondrocytes grown in vitro, which are then transplanted into the defects using a periosteal flap to retain the cells at the defect site. Studies that followed have attempted to refine this technique by using a cell matrix to support the chondrocytes. The reason for adding a resorbable cell matrix support that acts as a temporary scaffold until the chondrocytes are capable of producing extracellular matrix. Moreover, such a matrix may help in maintaining chondrocyte differentiation and phenotype. In this study, we have investigated the biocompatibility between human chondrocytes and biomaterials that could be used as matrix implants. It is a comparative study in vitro that involves assessing the proliferation and differentiation of human articular chondrocytes cultured on different resorbable biomaterials. Human chondrocytes were isolated from collagenase digest of articular cartilage provided by patients undergoing total knee replacements for osteoarthritis from the non-involved areas of the knee. The chondrocytes were then allowed to proliferate in vitro to increase the number of cells available for study. After adequate multiplication, the cells were seeded onto different biomaterials and allowed to from a cell biomaterial construct. The biomaterials used in this study were collagen I, calcium alginate, agarose, polyglycolic acid and Bioglass 45S5. The cell–biomaterial constructs were then collected at specific time points 3, 7, 14 and 21 days for histological and biochemical studies. The assessment includes studying proliferation, differentiation and extracellular matrix production. This was performed by immunostaining for collagen I and II production and histochemistry staining for glycosaminoglycans. Chondrocyte proliferation was more effective on 3D gels compared to ceramics and mesh. Cells on Bioglass expressed the same collagen type and at the same proportion as that expressed by freshly isolated cells. Moreover, Bioglass has induced cells to re-differentiate after they lost their differentiation in monolayer culture. Overall, however, there was no clear relationship between the cell morphology and type of collagen produced. Bioactive glass seems to behave as a suitable material for chondrocyte tissue engineering because it can maintain a chondrocyte phenotype. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png European Journal of Plastic Surgery Springer Journals

Comparison of meshes, gels and ceramic for cartilage tissue engineering in vitro

Loading next page...
 
/lp/springer_journal/comparison-of-meshes-gels-and-ceramic-for-cartilage-tissue-engineering-4QnTkrAXN5
Publisher
Springer-Verlag
Copyright
Copyright © 2012 by Springer-Verlag
Subject
Medicine & Public Health; Plastic Surgery
ISSN
0930-343X
eISSN
1435-0130
D.O.I.
10.1007/s00238-007-0189-8
Publisher site
See Article on Publisher Site

Abstract

Full-thickness articular cartilage defects lack the capacity of healing because of lack of blood supply and lack of chondrocyte proliferation around the injury site. These factors contribute to the difficulty of getting good healing of cartilage defects. Autologous chondrocyte transplantation has been proposed as a method for treating cartilage defects using chondrocytes grown in vitro, which are then transplanted into the defects using a periosteal flap to retain the cells at the defect site. Studies that followed have attempted to refine this technique by using a cell matrix to support the chondrocytes. The reason for adding a resorbable cell matrix support that acts as a temporary scaffold until the chondrocytes are capable of producing extracellular matrix. Moreover, such a matrix may help in maintaining chondrocyte differentiation and phenotype. In this study, we have investigated the biocompatibility between human chondrocytes and biomaterials that could be used as matrix implants. It is a comparative study in vitro that involves assessing the proliferation and differentiation of human articular chondrocytes cultured on different resorbable biomaterials. Human chondrocytes were isolated from collagenase digest of articular cartilage provided by patients undergoing total knee replacements for osteoarthritis from the non-involved areas of the knee. The chondrocytes were then allowed to proliferate in vitro to increase the number of cells available for study. After adequate multiplication, the cells were seeded onto different biomaterials and allowed to from a cell biomaterial construct. The biomaterials used in this study were collagen I, calcium alginate, agarose, polyglycolic acid and Bioglass 45S5. The cell–biomaterial constructs were then collected at specific time points 3, 7, 14 and 21 days for histological and biochemical studies. The assessment includes studying proliferation, differentiation and extracellular matrix production. This was performed by immunostaining for collagen I and II production and histochemistry staining for glycosaminoglycans. Chondrocyte proliferation was more effective on 3D gels compared to ceramics and mesh. Cells on Bioglass expressed the same collagen type and at the same proportion as that expressed by freshly isolated cells. Moreover, Bioglass has induced cells to re-differentiate after they lost their differentiation in monolayer culture. Overall, however, there was no clear relationship between the cell morphology and type of collagen produced. Bioactive glass seems to behave as a suitable material for chondrocyte tissue engineering because it can maintain a chondrocyte phenotype.

Journal

European Journal of Plastic SurgerySpringer Journals

Published: Feb 1, 2012

References

  • Thermally reversible polymer gel for chondrocyte culture
    Au, A; Ha, J; Polotsky, A; Krzyminski, K; Gutowska, A; Hungerford, DS; Frondoza, CG
  • Chondrocyte phenotypes on different extracellular matrix monolayers
    Brodkin, KR; Garcia, AJ; Levenston, ME

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off