Comparison of magnetic resonance concentration measurements in water to temperature measurements in compressible air flows

Comparison of magnetic resonance concentration measurements in water to temperature measurements... Magnetic resonance imaging (MRI) measurements in liquid flows provide highly detailed 3D mean velocity and concentration data in complex turbulent mixing flow applications. The scalar transport analogy is applied to infer the mean temperature distribution in high speed gas flows directly from the MRI concentration measurements in liquid. Compressibility effects on turbulent mixing are known to be weak for simple flows at high subsonic Mach number, and it was not known if this would hold in more complex flows characteristic of practical applications. Furthermore, the MRI measurements are often done at lower Reynolds number than the compressible application, although both are generally done in fully turbulent flows. The hypothesis is that the conclusions from MRI measurements performed in water are transferable to high subsonic Mach number applications. The present experiment is designed to compare stagnation temperature measurements in high speed airflow (M = 0.7) to concentration measurements in an identical water flow apparatus. The flow configuration was a low aspect ratio wall jet with a thick splitter plate producing a 3D complex downstream flow mixing the wall-jet fluid with the mainstream flow. The three-dimensional velocity field is documented using magnetic resonance velocimetry in the water experiment, and the mixing is quantified by measuring the mean concentration distribution of wall-jet fluid marked with dissolved copper sulfate. The airflow experiments are operated with a temperature difference between the main stream and the wall jet. Profiles of the stagnation temperature are measured with a shielded thermocouple probe. The results show excellent agreement between normalized temperature and concentration profiles after correction of the temperature measurements for the effects of energy separation. The agreement is within 1 % near the edges of the mixing layer, which suggests that the mixing characteristics of the large scale turbulence structures are the same in the two flows. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Comparison of magnetic resonance concentration measurements in water to temperature measurements in compressible air flows

Loading next page...
 
/lp/springer_journal/comparison-of-magnetic-resonance-concentration-measurements-in-water-2G5jv7AaqJ
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2014 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-014-1834-1
Publisher site
See Article on Publisher Site

Abstract

Magnetic resonance imaging (MRI) measurements in liquid flows provide highly detailed 3D mean velocity and concentration data in complex turbulent mixing flow applications. The scalar transport analogy is applied to infer the mean temperature distribution in high speed gas flows directly from the MRI concentration measurements in liquid. Compressibility effects on turbulent mixing are known to be weak for simple flows at high subsonic Mach number, and it was not known if this would hold in more complex flows characteristic of practical applications. Furthermore, the MRI measurements are often done at lower Reynolds number than the compressible application, although both are generally done in fully turbulent flows. The hypothesis is that the conclusions from MRI measurements performed in water are transferable to high subsonic Mach number applications. The present experiment is designed to compare stagnation temperature measurements in high speed airflow (M = 0.7) to concentration measurements in an identical water flow apparatus. The flow configuration was a low aspect ratio wall jet with a thick splitter plate producing a 3D complex downstream flow mixing the wall-jet fluid with the mainstream flow. The three-dimensional velocity field is documented using magnetic resonance velocimetry in the water experiment, and the mixing is quantified by measuring the mean concentration distribution of wall-jet fluid marked with dissolved copper sulfate. The airflow experiments are operated with a temperature difference between the main stream and the wall jet. Profiles of the stagnation temperature are measured with a shielded thermocouple probe. The results show excellent agreement between normalized temperature and concentration profiles after correction of the temperature measurements for the effects of energy separation. The agreement is within 1 % near the edges of the mixing layer, which suggests that the mixing characteristics of the large scale turbulence structures are the same in the two flows.

Journal

Experiments in FluidsSpringer Journals

Published: Oct 18, 2014

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off