Comparison of in vitro test systems using bacterial and mammalian cells for genotoxicity assessment within the “health-related indication value (HRIV) concept

Comparison of in vitro test systems using bacterial and mammalian cells for genotoxicity... In numerous cases, the German health-related indication value (HRIV) concept has proved its practicability for the assessment of drinking water relevant trace substances (Umweltbundesamt 2003). The HRIV is based on the toxicological profile of a substance. An open point of the HRIV concept has been the assignment of standardized test procedures to be used for the assessment. The level of the HRIV is at its lowest as soon as the genotoxicity of the substance is detected. As a single test on its own, it is not sufficient enough to assess the human toxicological relevance of a genotoxic effect or exclude it in the case of a negative result; a reasonable test battery was required, technically oriented towards the already harmonized international, hierarchical evaluation for toxicological assessment of chemicals. Therefore, an important aim of this project was to define a strategy for the genotoxicological assessment of anthropogenic trace substances. The basic test battery for genotoxicity of micropollutants in drinking water needs to fulfill several requirements. Although quick test results are needed for the determination of HRIV, a high degree of transferability to human genotoxicity should be ensured. Therefore, an in vitro genotoxicity test battery consisting of the Ames fluctuation test with two tester strains (ISO 11350), the umu test and the micronucleus test, or from the Ames test with five tester strains (OECD 471) and the micronucleus test is proposed. On the basis of selected test substances, it could be shown that the test battery leads to positive, indifferent, and negative results. Given indifferent results, the health authority and the water supplier must assume that it is a genotoxic substance. Genetically modified tester strains are being sensitive to different chemical classes by expression of selected mammalian key enzymes for example nitroreductase, acetyltransferase, and glutathione-S-transferase. These strains may provide valuable additional information and may give a first indication of the mechanism of action. To check this hypothesis, various additional strains expressing specific human-relevant enzymes were investigated. It could be shown that the additional use of genetically modified tester strains can enhance the detectable substance spectrum with the bacterial genotoxicological standard procedures or increase the sensitivity. The additional use provides orienting information at this level as a lot of data can be obtained quite quickly and with little effort. These indications of the mechanism of action should be however verified with a test system that uses mammalian cells, better human cells, to check their actual relevance. The selection of appropriate additional tester strains has to be defined from case to case depending on the molecular structure and also still requires some major expertise. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Science and Pollution Research Springer Journals

Comparison of in vitro test systems using bacterial and mammalian cells for genotoxicity assessment within the “health-related indication value (HRIV) concept

Loading next page...
 
/lp/springer_journal/comparison-of-in-vitro-test-systems-using-bacterial-and-mammalian-3Lds1QDVbN
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag Berlin Heidelberg
Subject
Environment; Environment, general; Environmental Chemistry; Ecotoxicology; Environmental Health; Atmospheric Protection/Air Quality Control/Air Pollution; Waste Water Technology / Water Pollution Control / Water Management / Aquatic Pollution
ISSN
0944-1344
eISSN
1614-7499
D.O.I.
10.1007/s11356-016-8166-z
Publisher site
See Article on Publisher Site

Abstract

In numerous cases, the German health-related indication value (HRIV) concept has proved its practicability for the assessment of drinking water relevant trace substances (Umweltbundesamt 2003). The HRIV is based on the toxicological profile of a substance. An open point of the HRIV concept has been the assignment of standardized test procedures to be used for the assessment. The level of the HRIV is at its lowest as soon as the genotoxicity of the substance is detected. As a single test on its own, it is not sufficient enough to assess the human toxicological relevance of a genotoxic effect or exclude it in the case of a negative result; a reasonable test battery was required, technically oriented towards the already harmonized international, hierarchical evaluation for toxicological assessment of chemicals. Therefore, an important aim of this project was to define a strategy for the genotoxicological assessment of anthropogenic trace substances. The basic test battery for genotoxicity of micropollutants in drinking water needs to fulfill several requirements. Although quick test results are needed for the determination of HRIV, a high degree of transferability to human genotoxicity should be ensured. Therefore, an in vitro genotoxicity test battery consisting of the Ames fluctuation test with two tester strains (ISO 11350), the umu test and the micronucleus test, or from the Ames test with five tester strains (OECD 471) and the micronucleus test is proposed. On the basis of selected test substances, it could be shown that the test battery leads to positive, indifferent, and negative results. Given indifferent results, the health authority and the water supplier must assume that it is a genotoxic substance. Genetically modified tester strains are being sensitive to different chemical classes by expression of selected mammalian key enzymes for example nitroreductase, acetyltransferase, and glutathione-S-transferase. These strains may provide valuable additional information and may give a first indication of the mechanism of action. To check this hypothesis, various additional strains expressing specific human-relevant enzymes were investigated. It could be shown that the additional use of genetically modified tester strains can enhance the detectable substance spectrum with the bacterial genotoxicological standard procedures or increase the sensitivity. The additional use provides orienting information at this level as a lot of data can be obtained quite quickly and with little effort. These indications of the mechanism of action should be however verified with a test system that uses mammalian cells, better human cells, to check their actual relevance. The selection of appropriate additional tester strains has to be defined from case to case depending on the molecular structure and also still requires some major expertise.

Journal

Environmental Science and Pollution ResearchSpringer Journals

Published: Dec 8, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off