Comparison between Compsopogon coeruleus and Porphyra yezoensis in their O2 evolution rates and phycobilisome composition

Comparison between Compsopogon coeruleus and Porphyra yezoensis in their O2 evolution rates and... In order to investigate the possible effects of the ecological environment on photosynthetic activity and the major light harvesting complex, the oxygen evolution rates and composition of phycobilisome from marine red alga Porphyra yezoensis Ueda and freshwater red alga Compsopogon coeruleus (Balbis) Montagne, which could grow and reproduce under salinity up to 35 ppt, were studied. The results showed that the oxygen evolution rate of P. yezoensis in seawater was significantly higher than that of C. coeruleus in freshwater, and P. yezoensis tolerated inorganic ions at a relatively higher concentration than C. coeruleus. Moreover, the phycoerythrin (PE) of P. yezoensis was R-phycoerythrin containing α, β, and γ subunits comprised phycoerythrobilin and phycourobilin. In contrast, the PE from C. coeruleus consisted of α, β, and γ subunits comprised only phycoerythrobilin but not phycourobilin, suggesting that the PE from C. coeruleus was of a new type. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Comparison between Compsopogon coeruleus and Porphyra yezoensis in their O2 evolution rates and phycobilisome composition

Loading next page...
 
/lp/springer_journal/comparison-between-compsopogon-coeruleus-and-porphyra-yezoensis-in-6vwR7JTXth
Publisher
SP MAIK Nauka/Interperiodica
Copyright
Copyright © 2008 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Sciences ; Plant Physiology
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443708020040
Publisher site
See Article on Publisher Site

Abstract

In order to investigate the possible effects of the ecological environment on photosynthetic activity and the major light harvesting complex, the oxygen evolution rates and composition of phycobilisome from marine red alga Porphyra yezoensis Ueda and freshwater red alga Compsopogon coeruleus (Balbis) Montagne, which could grow and reproduce under salinity up to 35 ppt, were studied. The results showed that the oxygen evolution rate of P. yezoensis in seawater was significantly higher than that of C. coeruleus in freshwater, and P. yezoensis tolerated inorganic ions at a relatively higher concentration than C. coeruleus. Moreover, the phycoerythrin (PE) of P. yezoensis was R-phycoerythrin containing α, β, and γ subunits comprised phycoerythrobilin and phycourobilin. In contrast, the PE from C. coeruleus consisted of α, β, and γ subunits comprised only phycoerythrobilin but not phycourobilin, suggesting that the PE from C. coeruleus was of a new type.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Jan 20, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off