Comparative transcriptomic analysis identifies evolutionarily conserved gene products in the vertebrate renal distal convoluted tubule

Comparative transcriptomic analysis identifies evolutionarily conserved gene products in the... Understanding the molecular basis of the complex regulatory networks controlling renal ion transports is of major physiological and clinical importance. In this study, we aimed to identify evolutionarily conserved critical players in the function of the renal distal convoluted tubule (DCT) by a comparative transcriptomic approach. We generated a transgenic zebrafish line with expression of the red fluorescent mCherry protein under the control of the zebrafish DCT-specific promoter of the thiazide-sensitive NaCl cotransporter (NCC). The mCherry expression was then used to isolate from the zebrafish mesonephric kidneys the distal late (DL) segments, the equivalent of the mammalian DCT, for subsequent RNA-seq analysis. We next compared this zebrafish DL transcriptome to the previously established mouse DCT transcriptome and identified a subset of gene products significantly enriched in both the teleost DL and the mammalian DCT, including SLCs and nuclear transcription factors. Surprisingly, several of the previously described regulators of NCC (e.g., SPAK, KLHL3, ppp1r1a) in the mouse were not found enriched in the zebrafish DL. Nevertheless, the zebrafish DL expressed enriched levels of related homologues. Functional knockdown of one of these genes, ppp1r1b, reduced the phosphorylation of NCC in the zebrafish pronephros, similar to what was seen previously in knockout mice for its homologue, Ppp1r1a. The present work is the first report on global gene expression profiling in a specific nephron portion of the zebrafish kidney, an increasingly used model system for kidney research. Our study suggests that comparative analysis of gene expression between phylogenetically distant species may be an effective approach to identify novel regulators of renal function. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Pflügers Archiv European Journal of Physiologyl of Physiology Springer Journals

Comparative transcriptomic analysis identifies evolutionarily conserved gene products in the vertebrate renal distal convoluted tubule

Loading next page...
 
/lp/springer_journal/comparative-transcriptomic-analysis-identifies-evolutionarily-3Re2NQnh6b
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag Berlin Heidelberg
Subject
Biomedicine; Human Physiology; Molecular Medicine; Neurosciences; Cell Biology; Receptors
ISSN
0031-6768
eISSN
1432-2013
D.O.I.
10.1007/s00424-017-2009-8
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial