The present study focused on mathematical modeling, multi response optimization, tool life, and economical analysis in finish hard turning of AISI D2 steel ((55 ± 1) HRC) using CVD-coated carbide (TiN/TiCN/Al2O3) and uncoated carbide inserts under dry environmental conditions. Regression methodology and the grey relational approach were implemented for modeling and multi-response optimization, respectively. Comparative economic statistics were carried out for both inserts, and the adequacy of the correlation model was verified. The experimental and predicted values for all responses were very close to each other, implying the significance of the model and indicating that the correlation coefficients were close to unity. The optimal parametric combinations for Al2O3 coated carbide were d1–f1–v2 (depth of cut = 0.1 mm, feed = 0.04 mm/r and cutting speed = 108 m/min), and those for the uncoated tool were d1–(0.1 mm)–f1 (0.04 mm/r)–v1 (63 m/min). The observed tool life for the coated carbide insert was 15 times higher than that for the uncoated carbide insert, considering flank wear criteria of 0.3 mm. The chip volume after machining for the coated carbide insert was 26.14 times higher than that of the uncoated carbide insert and could be better utilized for higher material removal rate. Abrasion, diffusion, notching, chipping, and built-up edge have been observed to be the principal wear mechanisms for tool life estimation. Use of the coated carbide tool reduced machining costs by about 3.55 times compared to the use of the uncoated carbide insert, and provided economic benefits in hard turning.
Advances in Manufacturing – Springer Journals
Published: Mar 9, 2018
It’s your single place to instantly
discover and read the research
that matters to you.
Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.
All for just $49/month
Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly
Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.
Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.
Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.
All the latest content is available, no embargo periods.
“Hi guys, I cannot tell you how much I love this resource. Incredible. I really believe you've hit the nail on the head with this site in regards to solving the research-purchase issue.”
Daniel C.
“Whoa! It’s like Spotify but for academic articles.”
@Phil_Robichaud
“I must say, @deepdyve is a fabulous solution to the independent researcher's problem of #access to #information.”
@deepthiw
“My last article couldn't be possible without the platform @deepdyve that makes journal papers cheaper.”
@JoseServera
DeepDyve Freelancer | DeepDyve Pro | |
---|---|---|
Price | FREE | $49/month |
Save searches from | ||
Create folders to | ||
Export folders, citations | ||
Read DeepDyve articles | Abstract access only | Unlimited access to over |
20 pages / month | ||
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.