Comparative study of Wenner and Schlumberger electrical resistivity method for groundwater investigation: a case study from Dhule district (M.S.), India

Comparative study of Wenner and Schlumberger electrical resistivity method for groundwater... The area chosen for the present study is Dhule district, which belongs to the drought prone area of Maharashtra State, India. Dhule district suffers from water problem, and therefore, there is no extra water available to supply for the agricultural and industrial growth. To understand the lithological characters in terms of its hydro-geological conditions, it is necessary to understand the geology of the area. It is now established fact that the geophysical method gives a better information of subsurface geology. Geophysical electrical surveys with four electrodes configuration, i.e., Wenner and Schlumberger method, were carried out at the same selected sites to observe the similarity and compared both the applications in terms of its use and handling in the field. A total 54 VES soundings were carried out spread over the Dhule district and representing different lithological units. The VES curves are drawn using inverse slope method for Wenner configuration, IPI2 win Software, and curve matching techniques were used for Schlumberger configuration. Regionwise lithologs are prepared based on the obtained resistivity and thickness for Wenner method. Regionwise curves were prepared based on resistivity layers for Schlumberger method. Comparing the two methods, it is observed that Wenner and Schlumberger methods have merits or demerits. Considering merits and demerits from the field point of view, it is suggested that Wenner inverse slope method is more handy for calculation and interpretation, but requires lateral length which is a constrain. Similarly, Schlumberger method is easy in application but unwieldy for their interpretation. The work amply proves the applicability of geophysical techniques in the water resource evaluation procedure. This technique is found to be suitable for the areas with similar geological setup elsewhere. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Water Science Springer Journals

Comparative study of Wenner and Schlumberger electrical resistivity method for groundwater investigation: a case study from Dhule district (M.S.), India

Loading next page...
 
/lp/springer_journal/comparative-study-of-wenner-and-schlumberger-electrical-resistivity-78HRh8OUIF
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by The Author(s)
Subject
Earth Sciences; Hydrogeology; Water Industry/Water Technologies; Industrial and Production Engineering; Waste Water Technology / Water Pollution Control / Water Management / Aquatic Pollution; Nanotechnology; Private International Law, International & Foreign Law, Comparative Law
ISSN
2190-5487
eISSN
2190-5495
D.O.I.
10.1007/s13201-017-0576-7
Publisher site
See Article on Publisher Site

Abstract

The area chosen for the present study is Dhule district, which belongs to the drought prone area of Maharashtra State, India. Dhule district suffers from water problem, and therefore, there is no extra water available to supply for the agricultural and industrial growth. To understand the lithological characters in terms of its hydro-geological conditions, it is necessary to understand the geology of the area. It is now established fact that the geophysical method gives a better information of subsurface geology. Geophysical electrical surveys with four electrodes configuration, i.e., Wenner and Schlumberger method, were carried out at the same selected sites to observe the similarity and compared both the applications in terms of its use and handling in the field. A total 54 VES soundings were carried out spread over the Dhule district and representing different lithological units. The VES curves are drawn using inverse slope method for Wenner configuration, IPI2 win Software, and curve matching techniques were used for Schlumberger configuration. Regionwise lithologs are prepared based on the obtained resistivity and thickness for Wenner method. Regionwise curves were prepared based on resistivity layers for Schlumberger method. Comparing the two methods, it is observed that Wenner and Schlumberger methods have merits or demerits. Considering merits and demerits from the field point of view, it is suggested that Wenner inverse slope method is more handy for calculation and interpretation, but requires lateral length which is a constrain. Similarly, Schlumberger method is easy in application but unwieldy for their interpretation. The work amply proves the applicability of geophysical techniques in the water resource evaluation procedure. This technique is found to be suitable for the areas with similar geological setup elsewhere.

Journal

Applied Water ScienceSpringer Journals

Published: Jun 1, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off