Comparative study of coke deposition on catalysts in reactions with and without oxygen

Comparative study of coke deposition on catalysts in reactions with and without oxygen Two types of catalysts, i.e. Pt/γ Al2O3 and Cu/Na-ZSM-5, were used to investigate the catalyst activity and amount of coke formation on the spent catalysts. The reactions of particular interest were the hydrocarbon oxidation and the SCR of NO with and without O2. Propane and propene were used as the hydrocarbon sources. The reaction conditions were as follows: reaction temperature =170–500°C, GHSV=4,000 hr−1, TOS=2 hr, feed composition depending on each reaction, but the composition of gases were fixed as HC=3,000 ppm, NO=1,000 ppm and O2=2.5%, using He balance. It was found that both the case of Pt/γ Al2O3 and the case of Cu/Na-ZSM-5, propene provided higher conversion and coke deposition than propane in the presence or the absence of O2 and/or NO. For Pt/γ Al2O3 catalyst, in case of the absence of oxygen reactions, the propene conversion dropped more rapidly than the propane conversion. Finally the reaction of propene gave a lower percent of hydrocarbon conversion than the reaction of propane. Additionally, propene had a higher percent selectivity of coke formation for the reaction with the absence of oxygen, but propane had a higher percent selectivity of coke formation for the reaction with the presence of oxygen. For Cu/Na-ZSM-5, in the system with absence and presence of oxygen, the addition of oxygen caused a significant change in % coke selectivity. With the presence of NOx, the percent conversion of both propane and propene decreased and that the % coke selectivity of propane decreased, whereas that of in propene increased. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Comparative study of coke deposition on catalysts in reactions with and without oxygen

Loading next page...
 
/lp/springer_journal/comparative-study-of-coke-deposition-on-catalysts-in-reactions-with-AxlBviAdys
Publisher
Springer Netherlands
Copyright
Copyright © 1998 by Springer
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1163/156856798X00122
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial