Comparative proteomic analysis of autotetraploid and diploid Paulownia tomentosa reveals proteins associated with superior photosynthetic characteristics and stress adaptability in autotetraploid Paulownia

Comparative proteomic analysis of autotetraploid and diploid Paulownia tomentosa reveals proteins... To enlarge the germplasm resource of Paulownia plants, we used colchicine to induce autotetraploid Paulownia tomentosa, as reported previously. Compared with its diploid progenitor, autotetraploid P. tomentosa exhibits better photosynthetic characteristics and higher stress resistance. However, the underlying mechanism for its predominant characteristics has not been determined at the proteome level. In this study, isobaric tag for relative and absolute quantitation coupled with liquid chromatography-tandem mass spectrometry was employed to compare proteomic changes between autotetraploid and diploid P. tomentosa. A total of 1427 proteins were identified in our study, of which 130 proteins were differentially expressed between autotetraploid and diploid P. tomentosa. Functional analysis of differentially expressed proteins revealed that photosynthesis-related proteins and stress-responsive proteins were significantly enriched among the differentially expressed proteins, suggesting they may be responsible for the photosynthetic characteristics and stress adaptability of autotetraploid P. tomentosa. The correlation analysis between transcriptome and proteome data revealed that only 15 (11.5%) of the differentially expressed proteins had corresponding differentially expressed unigenes between diploid and autotetraploid P. tomentosa. These results indicated that there was a limited correlation between the differentially expressed proteins and the previously reported differentially expressed unigenes. This work provides new clues to better understand the superior traits in autotetraploid P. tomentosa and lays a theoretical foundation for developing Paulownia breeding strategies in the future. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physiology and Molecular Biology of Plants Springer Journals

Comparative proteomic analysis of autotetraploid and diploid Paulownia tomentosa reveals proteins associated with superior photosynthetic characteristics and stress adaptability in autotetraploid Paulownia

Loading next page...
 
/lp/springer_journal/comparative-proteomic-analysis-of-autotetraploid-and-diploid-paulownia-Q9cSLXa6Xb
Publisher
Springer India
Copyright
Copyright © 2017 by Prof. H.S. Srivastava Foundation for Science and Society
Subject
Life Sciences; Plant Sciences; Plant Physiology; Biological and Medical Physics, Biophysics; Cell Biology
ISSN
0971-5894
eISSN
0974-0430
D.O.I.
10.1007/s12298-017-0447-6
Publisher site
See Article on Publisher Site

Abstract

To enlarge the germplasm resource of Paulownia plants, we used colchicine to induce autotetraploid Paulownia tomentosa, as reported previously. Compared with its diploid progenitor, autotetraploid P. tomentosa exhibits better photosynthetic characteristics and higher stress resistance. However, the underlying mechanism for its predominant characteristics has not been determined at the proteome level. In this study, isobaric tag for relative and absolute quantitation coupled with liquid chromatography-tandem mass spectrometry was employed to compare proteomic changes between autotetraploid and diploid P. tomentosa. A total of 1427 proteins were identified in our study, of which 130 proteins were differentially expressed between autotetraploid and diploid P. tomentosa. Functional analysis of differentially expressed proteins revealed that photosynthesis-related proteins and stress-responsive proteins were significantly enriched among the differentially expressed proteins, suggesting they may be responsible for the photosynthetic characteristics and stress adaptability of autotetraploid P. tomentosa. The correlation analysis between transcriptome and proteome data revealed that only 15 (11.5%) of the differentially expressed proteins had corresponding differentially expressed unigenes between diploid and autotetraploid P. tomentosa. These results indicated that there was a limited correlation between the differentially expressed proteins and the previously reported differentially expressed unigenes. This work provides new clues to better understand the superior traits in autotetraploid P. tomentosa and lays a theoretical foundation for developing Paulownia breeding strategies in the future.

Journal

Physiology and Molecular Biology of PlantsSpringer Journals

Published: May 19, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off