Comparative organization and the origin of noncoding regulatory RNA genes from X-chromosome inactivation center of human and mouse

Comparative organization and the origin of noncoding regulatory RNA genes from X-chromosome... After the radiation of primates and rodents, the evolution of X-chromosome inactivation centers in human and mouse (XIC/Xic) followed two different directions. Human XIC followed the pathway towards transposon accumulation (the repeat proportion in the center constitutes 72%), especially LINEs, which prevail in the center. On the contrary, mouse Xic eliminated long repeats and accumulated species-specific SINEs (the repeat proportion in the center constitutes 35%). The mechanism underlying inactivation of one of the X chromosomes in female mammals appeared on the basis of trasnsposons. The key gene of the inactivation process, XIST/Xist, similarly to other long noncoding RNA genes, like TSIX/Tsix, JPX/Jpx, and FTX/Ftx, was formed with the involvement of different transposon sequences. Furthermore, two clusters of microRNA genes from inactivation center originated from L2 [1]. In mouse, one of such clusters has been preserved in the form of microRNA pseudogenes. Thus, long ncRNA genes and microRNAs appeared during the period of transposable elements expansion in this locus, 140 to 105 Myr ago, after the radiation of marsupials and placental mammal lineages. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Genetics Springer Journals

Comparative organization and the origin of noncoding regulatory RNA genes from X-chromosome inactivation center of human and mouse

Loading next page...
 
/lp/springer_journal/comparative-organization-and-the-origin-of-noncoding-regulatory-rna-QWOHdh6oGE
Publisher
SP MAIK Nauka/Interperiodica
Copyright
Copyright © 2010 by Pleiades Publishing, Ltd.
Subject
Biomedicine; Microbial Genetics and Genomics; Animal Genetics and Genomics; Human Genetics
ISSN
1022-7954
eISSN
1608-3369
D.O.I.
10.1134/S1022795410100200
Publisher site
See Article on Publisher Site

Abstract

After the radiation of primates and rodents, the evolution of X-chromosome inactivation centers in human and mouse (XIC/Xic) followed two different directions. Human XIC followed the pathway towards transposon accumulation (the repeat proportion in the center constitutes 72%), especially LINEs, which prevail in the center. On the contrary, mouse Xic eliminated long repeats and accumulated species-specific SINEs (the repeat proportion in the center constitutes 35%). The mechanism underlying inactivation of one of the X chromosomes in female mammals appeared on the basis of trasnsposons. The key gene of the inactivation process, XIST/Xist, similarly to other long noncoding RNA genes, like TSIX/Tsix, JPX/Jpx, and FTX/Ftx, was formed with the involvement of different transposon sequences. Furthermore, two clusters of microRNA genes from inactivation center originated from L2 [1]. In mouse, one of such clusters has been preserved in the form of microRNA pseudogenes. Thus, long ncRNA genes and microRNAs appeared during the period of transposable elements expansion in this locus, 140 to 105 Myr ago, after the radiation of marsupials and placental mammal lineages.

Journal

Russian Journal of GeneticsSpringer Journals

Published: Oct 13, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off