Comparative Genealogical Analysis of the Resistance of Winter Wheat to Common Bunt

Comparative Genealogical Analysis of the Resistance of Winter Wheat to Common Bunt Comparative genealogical analysis of North American (the United States and Canada) and Eastern European (Russia and Ukraine) winter wheat cultivars resistant and susceptible to common bunt has been performed. Analysis of variance applied to North American wheats has demonstrated that resistant and susceptible cultivars significantly differ from each other with respect to the contributions of common ancestors. The contributions of Oro (Bt4and Bt7), Rio (Bt6), White Odessa (Bt1), and Florence (Bt3) to the resistant cultivars are significantly higher than their contributions to the susceptible ones. This demonstrates that the use of these resistance donors in wheat breeding for several decades has been effective. The contribution of PI-178383 (Bt8, Bt9,and Bt10) is considerably higher in the group of resistant cultivars bred after 1965. The mean contributions of Federation (Bt7) and Nebred (Bt4) are significantly higher in the group of resistant cultivars obtained before 1965; however, the differences in the contributions of these donors between new resistant and susceptible cultivars became nonsignificant. Among the Russian and Ukrainian cultivars, there are differences between groups of resistant and susceptible cultivars from different regions determined by the differences between the regional populations of the pathogen in racial composition. In the northern region, the contributions of the wheat grass (Agropyron glaucum) and the rye cultivar Eliseevskaya are significantly higher in the resistant cultivars; in the southern region, a local cultivar of the Odessa oblast is the prevalent resistant cultivar. In addition, cultivar Yaroslav Emmer is likely to be effective in the northern region; and foreign sources (Oro, Florence, Federation, and Triticum timopheevii), in the southern region. Very few sources of vertical resistance to common bunt are used for winter wheat breeding in Russia and Ukraine. The decrease in genetic diversity in favor of a few identical genes may cause adequate changes in the pathogen population and subsequent proliferation of the pathogen on the genetically identical substrate. A new interpretation of the resistance of line Lutescens 6028 as a source of new genes, Bt12 and Bt13, is suggested. Both genealogical and segregation analyses have shown that the genes determining the resistance of this line may be identical to those described earlier (Bt1, Bt3, Bt4, Bt6, and Bt7); and the high resistance of this line is determined by a combination of these genes. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Genetics Springer Journals

Comparative Genealogical Analysis of the Resistance of Winter Wheat to Common Bunt

Loading next page...
 
/lp/springer_journal/comparative-genealogical-analysis-of-the-resistance-of-winter-wheat-to-qmRm00Nwsj
Publisher
Kluwer Academic Publishers-Plenum Publishers
Copyright
Copyright © 2004 by MAIK “Nauka/Interperiodica”
Subject
Biomedicine; Human Genetics
ISSN
1022-7954
eISSN
1608-3369
D.O.I.
10.1023/B:RUGE.0000024979.47710.68
Publisher site
See Article on Publisher Site

Abstract

Comparative genealogical analysis of North American (the United States and Canada) and Eastern European (Russia and Ukraine) winter wheat cultivars resistant and susceptible to common bunt has been performed. Analysis of variance applied to North American wheats has demonstrated that resistant and susceptible cultivars significantly differ from each other with respect to the contributions of common ancestors. The contributions of Oro (Bt4and Bt7), Rio (Bt6), White Odessa (Bt1), and Florence (Bt3) to the resistant cultivars are significantly higher than their contributions to the susceptible ones. This demonstrates that the use of these resistance donors in wheat breeding for several decades has been effective. The contribution of PI-178383 (Bt8, Bt9,and Bt10) is considerably higher in the group of resistant cultivars bred after 1965. The mean contributions of Federation (Bt7) and Nebred (Bt4) are significantly higher in the group of resistant cultivars obtained before 1965; however, the differences in the contributions of these donors between new resistant and susceptible cultivars became nonsignificant. Among the Russian and Ukrainian cultivars, there are differences between groups of resistant and susceptible cultivars from different regions determined by the differences between the regional populations of the pathogen in racial composition. In the northern region, the contributions of the wheat grass (Agropyron glaucum) and the rye cultivar Eliseevskaya are significantly higher in the resistant cultivars; in the southern region, a local cultivar of the Odessa oblast is the prevalent resistant cultivar. In addition, cultivar Yaroslav Emmer is likely to be effective in the northern region; and foreign sources (Oro, Florence, Federation, and Triticum timopheevii), in the southern region. Very few sources of vertical resistance to common bunt are used for winter wheat breeding in Russia and Ukraine. The decrease in genetic diversity in favor of a few identical genes may cause adequate changes in the pathogen population and subsequent proliferation of the pathogen on the genetically identical substrate. A new interpretation of the resistance of line Lutescens 6028 as a source of new genes, Bt12 and Bt13, is suggested. Both genealogical and segregation analyses have shown that the genes determining the resistance of this line may be identical to those described earlier (Bt1, Bt3, Bt4, Bt6, and Bt7); and the high resistance of this line is determined by a combination of these genes.

Journal

Russian Journal of GeneticsSpringer Journals

Published: Oct 18, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off