Comparative FISH analysis of C-positive blocks of centromeric chromosomal regions of pygmy wood mice Sylvaemus uralensis (Rodentia, Muridae)

Comparative FISH analysis of C-positive blocks of centromeric chromosomal regions of pygmy wood... The composition and homology of centromeric heterochromatin DNA has been compared in representatives of the Asian race and two chromosomal forms (Eastern European and Southern European) of the European race of the pygmy wood mouse Sylvaemus uralensis by means of in situ hybridization with metaphase chromosomes of microdissection DNA probes obtained from centromeric C-blocks of mice of the Southern European chromosomal form and the Asian race. Joint hybridization of both DNA probes yielded all possible variants of centromeric regions in terms of the presence of repetitive sequences homologous to those of some or another dissection region, which indicates a diversity of centromeric regions differing in DNA composition. However, most variations of the fluorescent in situ hybridization (FISH) patterns are apparently related to quantitative differences of repetitive elements of the genome. Experiments with the DNA probe obtained from the genome of the Southern European form of the pygmy wood mouse have shown that the number of intense FISH signals roughly corresponds to the number of large C-segments in representatives of the European race, which is characterized by a large amount of the centromeric C-heterochromatin in the karyotype. However, intense signals have been also detected in experiments on hybridization of this probe with chromosomes of representatives of the Asian race, which has no large C-blocks in the karyotype; thus, DNA sequences homologous to heterochromatic ones are also present in nonheterochromatic regions adjacent to C-segments. Despite the variations of the numbers of both intense and weak FISH signals, all chromosomal forms/races of S. uralensis significantly differ of the samples from one another in these characters. The number of intense FISH signals in DNA in pygmy wood mice of the samples from eastern Turkmenistan (the Kugitang ridge) and southern Omsk oblast (the vicinity of the Talapker railway station) was intermediate between those in the European and Asian races, which is apparently related to a hybrid origin of these populations (the hybridization having occurred long ago in the former case and recently in the latter case). Russian Journal of Genetics Springer Journals

Comparative FISH analysis of C-positive blocks of centromeric chromosomal regions of pygmy wood mice Sylvaemus uralensis (Rodentia, Muridae)

Loading next page...
SP MAIK Nauka/Interperiodica
Copyright © 2010 by Pleiades Publishing, Ltd.
Biomedicine; Microbial Genetics and Genomics; Animal Genetics and Genomics; Human Genetics
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial