Comparative expression profiling in meristems of inbred-hybrid triplets of maize based on morphological investigations of heterosis for plant height

Comparative expression profiling in meristems of inbred-hybrid triplets of maize based on... Heterosis, the superior performance of hybrids as compared to their parental mean is an agronomically important phenomenon well-described morphologically. However, little is known about its molecular basis. We investigated four genetically unrelated maize (Zea mays L.) inbred lines and their F1 crosses both at the phenotype and transcriptome level, focusing on plant height (PHT) component traits. Substantial mid-parent heterosis (MPH) was found for all parent-hybrid triplets for PHT in the range of 37.9–56.4% in the field and 11.1–39.5% under controlled greenhouse conditions. Analyses of heterosis for number and length of internodes showed two to three times higher MPH in the field as compared to the greenhouse. All three traits exhibited high heritabilities, highest for PHT 95–98%. Two methods for gene expression quantification were applied. High-density cDNA uni-gene microarrays containing 11,827 ESTs were utilized for the selection of differentially expressed genes related to heterosis for PHT. For the four triplets with eight possible parent-hybrid comparisons we identified 434 consistently differentially expressed genes with a p ≤ 0.05. Microarray results were used to verify the dominance/overdominance hypothesis. In our study, more than 50% genes showed overdominance, 26% partial dominance, 12.6% complete dominance and 10.2% additive gene action. Moreover, more consistently differentially expressed genes were detected in related triplets, sharing one parent, than in unrelated triplets. Quantitative RT-PCR was applied in order to validate microarray results. The role of the differentially expressed genes in relation to heterosis for PHT is discussed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Comparative expression profiling in meristems of inbred-hybrid triplets of maize based on morphological investigations of heterosis for plant height

Loading next page...
 
/lp/springer_journal/comparative-expression-profiling-in-meristems-of-inbred-hybrid-Fvs6mRf120
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2006 by Springer Science+Business Media B.V.
Subject
Life Sciences; Plant Pathology; Biochemistry, general; Plant Sciences
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-006-9069-z
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial