Comparative assessment of cooling conditions, including MQL technology on machining factors in an environmentally friendly approach

Comparative assessment of cooling conditions, including MQL technology on machining factors in an... Manufacturers need to continuously improve productivity and reduce the most disadvantages. In the current work, an experimental study has been carried out in order to evaluate the influence of different cutting parameters on the various machining factors such as surface roughness, cutting force, cutting power, metal removal rate, and tool wear during turning of X210Cr12 steel using a multilayer-coated tungsten carbide insert with various nose radii (r). Tests are designed according to Taguchi’s L18 (21 × 34) orthogonal array. ANOVA has been performed to determine the effect of the cutting conditions, and mathematical models have been developed through response surface methodology (RSM). The results indicate that the feed rate and the tool nose radius are the main affecting factors on surface roughness while both tangential force and cutting power are affected mainly by the depth of cut followed by the feed rate and the nose radius. Other special tests of long term have been established in order to study the wear evolution and consequently to determine the tool life. The results indicate also that minimum quantity lubrication (MQL) leads to an important improvement in terms of the cutting tool life by a gain of 23~40% compared to wet and dry machining. It has been found that the MQL is an interesting way to minimize lubrication cost and protect operator health and the environment while keeping better machining quality. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The International Journal of Advanced Manufacturing Technology Springer Journals

Comparative assessment of cooling conditions, including MQL technology on machining factors in an environmentally friendly approach

Loading next page...
 
/lp/springer_journal/comparative-assessment-of-cooling-conditions-including-mql-technology-tDsOtGz9Wf
Publisher
Springer London
Copyright
Copyright © 2017 by Springer-Verlag London
Subject
Engineering; Industrial and Production Engineering; Media Management; Mechanical Engineering; Computer-Aided Engineering (CAD, CAE) and Design
ISSN
0268-3768
eISSN
1433-3015
D.O.I.
10.1007/s00170-016-9958-5
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial