Comparative analysis of transcriptional profiles of retinoic-acid-induced gene I-like receptors and interferons in seven tissues from ducks infected with avian Tembusu virus

Comparative analysis of transcriptional profiles of retinoic-acid-induced gene I-like receptors... Avian Tembusu virus (ATV), an emerging virus that mainly infects laying and breeding ducks in China, has caused severe economic loss in duck industry. However, there have been no reports about host innate immune responses during ATV infection and its correlation with clinical signs or pathology. To identify the roles of these immune factors in the innate host response to ATV infection, quantitative real-time PCR (qPCR) was used to analyze the transcriptional profiles on the genes encoding two retinoic-acid-induced gene I (RIG-I)-like receptors (RLRs) and two interferons (INF-α and INF-γ) in seven tissues of an ATV-infected shelduck. After infection with ATV, both RLR genes were significantly upregulated ( P < 0.05) in all seven tissues. The peak expression levels of the two RLR genes were observed at 24 hours postinfection (hpi) and were higher in non-lymphoid tissues (liver, lung, kidney, and ovary) than in lymphoid tissues (thymus, spleen and bursa). Although the transcription levels of both IFN genes were also upregulated, they showed different time-dependent expression patterns compared with those of the RLR genes. In addition, the highest mRNA expression of the two IFN genes was observed in the ovary at 6 hpi. This observation suggests that the ovary is the primary target tissue in ATV infection and explains the clinical characteristics of the primary pathological changes in the ovaries of ATV-infected ducks. Our results, for the first time, elucidate the differential and coordinated expression profiles of two RLRs and two IFNs in an ATV-infected shelduck. Archives of Virology Springer Journals

Comparative analysis of transcriptional profiles of retinoic-acid-induced gene I-like receptors and interferons in seven tissues from ducks infected with avian Tembusu virus

Loading next page...
Springer Vienna
Copyright © 2016 by Springer-Verlag Wien
Biomedicine; Virology; Medical Microbiology; Infectious Diseases
Publisher site
See Article on Publisher Site


  • Characterization of a Tembusu virus isolated from naturally infected house sparrows (Passer domesticus) in Northern China
    Tang, Y; Diao, Y; Yu, C; Gao, X; Ju, X; Xue, C; Liu, X; Ge, P; Qu, J; Zhang, D
  • Sensing viral invasion by RIG-I like receptors
    Yoo, JS; Kato, H; Fujita, T
  • Recognition of viruses by cytoplasmic sensors
    Wilkins, C; Gale, M
  • Effect of age on the pathogenesis of DHV-1 in Pekin ducks and on the innate immune responses of ducks to infection
    Song, C; Yu, S; Duan, Y; Hu, Y; Qiu, X; Tan, L; Sun, Y; Wang, M; Cheng, A; Ding, C

You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial