Comparative analysis of the plant mRNA-destabilizing element, DST, in mammalian and tobacco cells

Comparative analysis of the plant mRNA-destabilizing element, DST, in mammalian and tobacco cells The labile SAUR transcripts from higher plants contain a conserved DST sequence in their 3′-untranslated regions. Two copies of a DST sequence from soybean are sufficient to destabilize reporter transcripts in cultured tobacco cells whereas variants bearing mutations in the conserved ATAGAT or GTA regions are inactive. To investigate the potential for conserved recognition components in mammalian and plant cells, we examined the function of this instability determinant in mouse NIH3T3 fibroblasts and tobacco BY2 cells. In fibroblasts, a tetrameric DST element from soybean accelerated deadenylation and decay of a reporter transcript. However, a version mutated in the ATAGAT region was equally effective in this regard, and a tetrameric DST element from Arabidopsis was inactive. In contrast, the soybean DST element was more active as an mRNA instability element than the mutant version and the Arabidopsiselement, when tested as tetramers in tobacco cells. Hence, the plant DST element is not recognized in animal cells with the same sequence requirements as in plant cells. Therefore, its mode of recognition appears to be plant-specific. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Comparative analysis of the plant mRNA-destabilizing element, DST, in mammalian and tobacco cells

Loading next page...
 
/lp/springer_journal/comparative-analysis-of-the-plant-mrna-destabilizing-element-dst-in-2DS7eFU6xj
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2002 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1014936824187
Publisher site
See Article on Publisher Site

Abstract

The labile SAUR transcripts from higher plants contain a conserved DST sequence in their 3′-untranslated regions. Two copies of a DST sequence from soybean are sufficient to destabilize reporter transcripts in cultured tobacco cells whereas variants bearing mutations in the conserved ATAGAT or GTA regions are inactive. To investigate the potential for conserved recognition components in mammalian and plant cells, we examined the function of this instability determinant in mouse NIH3T3 fibroblasts and tobacco BY2 cells. In fibroblasts, a tetrameric DST element from soybean accelerated deadenylation and decay of a reporter transcript. However, a version mutated in the ATAGAT region was equally effective in this regard, and a tetrameric DST element from Arabidopsis was inactive. In contrast, the soybean DST element was more active as an mRNA instability element than the mutant version and the Arabidopsiselement, when tested as tetramers in tobacco cells. Hence, the plant DST element is not recognized in animal cells with the same sequence requirements as in plant cells. Therefore, its mode of recognition appears to be plant-specific.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 13, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off