Comparative analysis of light-ion ranges in gaseous, liquid, and solid media

Comparative analysis of light-ion ranges in gaseous, liquid, and solid media Ranges of ions from He to Ne in gaseous (hydrogen and argon), liquid (water), and solid (carbon) media are analyzed. This analysis demonstrates the different dependences of ranges on the velocities, the charges, and the masses of ions in different velocity region. In the case of small ion velocities, the ranges are directly proportional to their velocities and masses and are inversely proportional to the nuclear charge. In the intermediate velocity region corresponding to an ion energy of Е = 0.1–1 MeV/nucleon, in which processes of ion charge exchange play an important role and the average ion charge differs from the nuclear charge, the ranges become proportional to the squared ion velocities and masses and are inversely proportional to the nuclear charge. To establish the relation between the ion ranges in the regions of small and average velocities, it is convenient to use the universal function f(Z, M) = RZ/M, successfully describing the reduced ranges of ions with given velocities in gaseous, liquid, and solid media. In the case of large velocities where ions upon passing through the media lose all electrons, the ranges are directly proportional to the squared ion energies and masses and are inversely proportional to the squared nuclear charge. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques Springer Journals

Comparative analysis of light-ion ranges in gaseous, liquid, and solid media

Loading next page...
 
/lp/springer_journal/comparative-analysis-of-light-ion-ranges-in-gaseous-liquid-and-solid-cRLGDQYjQo
Publisher
Springer Journals
Copyright
Copyright © 2017 by Pleiades Publishing, Ltd.
Subject
Materials Science; Surfaces and Interfaces, Thin Films
ISSN
1027-4510
eISSN
1819-7094
D.O.I.
10.1134/S102745101704005X
Publisher site
See Article on Publisher Site

Abstract

Ranges of ions from He to Ne in gaseous (hydrogen and argon), liquid (water), and solid (carbon) media are analyzed. This analysis demonstrates the different dependences of ranges on the velocities, the charges, and the masses of ions in different velocity region. In the case of small ion velocities, the ranges are directly proportional to their velocities and masses and are inversely proportional to the nuclear charge. In the intermediate velocity region corresponding to an ion energy of Е = 0.1–1 MeV/nucleon, in which processes of ion charge exchange play an important role and the average ion charge differs from the nuclear charge, the ranges become proportional to the squared ion velocities and masses and are inversely proportional to the nuclear charge. To establish the relation between the ion ranges in the regions of small and average velocities, it is convenient to use the universal function f(Z, M) = RZ/M, successfully describing the reduced ranges of ions with given velocities in gaseous, liquid, and solid media. In the case of large velocities where ions upon passing through the media lose all electrons, the ranges are directly proportional to the squared ion energies and masses and are inversely proportional to the squared nuclear charge.

Journal

Journal of Surface Investigation. X-ray, Synchrotron and Neutron TechniquesSpringer Journals

Published: Aug 24, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off