Compactness and sequential completeness in some spaces of operators

Compactness and sequential completeness in some spaces of operators Let $$X$$ X be a completely regular Hausdorff space and $$C_b(X)$$ C b ( X ) be the Banach lattice of all real-valued bounded continuous functions on $$X$$ X , endowed with the strict topologies $$\beta _\sigma ,$$ β σ , $$\beta _\tau $$ β τ and $$\beta _t$$ β t . Let $$\mathcal{L}_{\beta _z,\xi }(C_b(X),E)$$ L β z , ξ ( C b ( X ) , E ) $$(z=\sigma ,\tau ,t)$$ ( z = σ , τ , t ) stand for the space of all $$(\beta _z,\xi )$$ ( β z , ξ ) -continuous linear operators from $$C_b(X)$$ C b ( X ) to a locally convex Hausdorff space $$(E,\xi ),$$ ( E , ξ ) , provided with the topology $$\mathcal{T}_s$$ T s of simple convergence. We characterize relative $$\mathcal{T}_s$$ T s -compactness in $$\mathcal{L}_{\beta _z,\xi }(C_b(X),E)$$ L β z , ξ ( C b ( X ) , E ) in terms of the representing Baire vector measures. It is shown that if $$(E,\xi )$$ ( E , ξ ) is sequentially complete, then the spaces $$(\mathcal{L}_{\beta _z,\xi }(C_b(X),E),\mathcal{T}_s)$$ ( L β z , ξ ( C b ( X ) , E ) , T s ) are sequentially complete whenever $$z=\sigma $$ z = σ ; $$z=\tau $$ z = τ and $$X$$ X is paracompact; $$z=t$$ z = t and $$X$$ X is paracompact and Čech complete. Moreover, a Dieudonné–Grothendieck type theorem for operators on $$C_b(X)$$ C b ( X ) is given. Positivity Springer Journals

Compactness and sequential completeness in some spaces of operators

Positivity , Volume 18 (2) – Jul 3, 2013

Loading next page...
Springer Basel
Copyright © 2013 by The Author(s)
Mathematics; Fourier Analysis; Operator Theory; Potential Theory; Calculus of Variations and Optimal Control; Optimization; Econometrics
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial