Commonality of self-recognition specificity of S haplotypes between Brassica oleracea and Brassica rapa

Commonality of self-recognition specificity of S haplotypes between Brassica oleracea and... We have identified several interspecific pairs of S haplotypes having highly similar SRK and SP11/SCR sequences between Brassica oleracea and Brassica rapa. The recognition specificities of S haplotypes in these pairs were examined with three different methods. Stigmas of interspecific hybrids between an S-32 homozygote in B. oleracea and an S-60 homozygote in B. rapa, which were produced to avoid the interspecific incompatibility between the two species, showed incompatibility to the pollen of an S-8 homozygote in B. rapa and to the pollen of an S-15 homozygote in B. oleracea, while it showed compatibility to the pollen of other S haplotypes, suggesting B. oleracea S-32 and B. rapa S-60 have the same recognition specificity as B. rapa S-8 and B. oleracea S-15. Pollen grains of transgenic S-60 homozygous plants in B. rapa carrying a transgene of SP11-24 from B. oleracea were incompatible to B. rapa S-36 stigma, indicating that B. oleracea S-24 and B. rapa S-36 have the same recognition specificity. Application of the SP11 protein of B. rapa S-41 and S-47 onto the surface of B. oleracea S-64 stigmas and S-12 stigmas, respectively, resulted in the incompatibility reaction to pollen grains of another S haplotype, but application onto the stigmas of other S haplotypes did not, suggesting that B. oleracea S-64 stigmas and S-12 stigmas recognized the B. rapa SP11-41 and SP11-47 proteins as self SP11 proteins, respectively. Besides having evolutionary implications, finding of many interspecific pairs of S haplotypes can provide insight into the molecular mechanism of self-recognition. Comparing deduced amino-acid sequences of SP11 proteins and SRK proteins in the pairs, regions of SP11 and SRK important for self-recognition are discussed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Commonality of self-recognition specificity of S haplotypes between Brassica oleracea and Brassica rapa

Loading next page...
 
/lp/springer_journal/commonality-of-self-recognition-specificity-of-s-haplotypes-between-WPgP5iK4LK
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2003 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1024819129785
Publisher site
See Article on Publisher Site

Abstract

We have identified several interspecific pairs of S haplotypes having highly similar SRK and SP11/SCR sequences between Brassica oleracea and Brassica rapa. The recognition specificities of S haplotypes in these pairs were examined with three different methods. Stigmas of interspecific hybrids between an S-32 homozygote in B. oleracea and an S-60 homozygote in B. rapa, which were produced to avoid the interspecific incompatibility between the two species, showed incompatibility to the pollen of an S-8 homozygote in B. rapa and to the pollen of an S-15 homozygote in B. oleracea, while it showed compatibility to the pollen of other S haplotypes, suggesting B. oleracea S-32 and B. rapa S-60 have the same recognition specificity as B. rapa S-8 and B. oleracea S-15. Pollen grains of transgenic S-60 homozygous plants in B. rapa carrying a transgene of SP11-24 from B. oleracea were incompatible to B. rapa S-36 stigma, indicating that B. oleracea S-24 and B. rapa S-36 have the same recognition specificity. Application of the SP11 protein of B. rapa S-41 and S-47 onto the surface of B. oleracea S-64 stigmas and S-12 stigmas, respectively, resulted in the incompatibility reaction to pollen grains of another S haplotype, but application onto the stigmas of other S haplotypes did not, suggesting that B. oleracea S-64 stigmas and S-12 stigmas recognized the B. rapa SP11-41 and SP11-47 proteins as self SP11 proteins, respectively. Besides having evolutionary implications, finding of many interspecific pairs of S haplotypes can provide insight into the molecular mechanism of self-recognition. Comparing deduced amino-acid sequences of SP11 proteins and SRK proteins in the pairs, regions of SP11 and SRK important for self-recognition are discussed.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 7, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off