Commonality of self-recognition specificity of S haplotypes between Brassica oleracea and Brassica rapa

Commonality of self-recognition specificity of S haplotypes between Brassica oleracea and... We have identified several interspecific pairs of S haplotypes having highly similar SRK and SP11/SCR sequences between Brassica oleracea and Brassica rapa. The recognition specificities of S haplotypes in these pairs were examined with three different methods. Stigmas of interspecific hybrids between an S-32 homozygote in B. oleracea and an S-60 homozygote in B. rapa, which were produced to avoid the interspecific incompatibility between the two species, showed incompatibility to the pollen of an S-8 homozygote in B. rapa and to the pollen of an S-15 homozygote in B. oleracea, while it showed compatibility to the pollen of other S haplotypes, suggesting B. oleracea S-32 and B. rapa S-60 have the same recognition specificity as B. rapa S-8 and B. oleracea S-15. Pollen grains of transgenic S-60 homozygous plants in B. rapa carrying a transgene of SP11-24 from B. oleracea were incompatible to B. rapa S-36 stigma, indicating that B. oleracea S-24 and B. rapa S-36 have the same recognition specificity. Application of the SP11 protein of B. rapa S-41 and S-47 onto the surface of B. oleracea S-64 stigmas and S-12 stigmas, respectively, resulted in the incompatibility reaction to pollen grains of another S haplotype, but application onto the stigmas of other S haplotypes did not, suggesting that B. oleracea S-64 stigmas and S-12 stigmas recognized the B. rapa SP11-41 and SP11-47 proteins as self SP11 proteins, respectively. Besides having evolutionary implications, finding of many interspecific pairs of S haplotypes can provide insight into the molecular mechanism of self-recognition. Comparing deduced amino-acid sequences of SP11 proteins and SRK proteins in the pairs, regions of SP11 and SRK important for self-recognition are discussed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Commonality of self-recognition specificity of S haplotypes between Brassica oleracea and Brassica rapa

Loading next page...
 
/lp/springer_journal/commonality-of-self-recognition-specificity-of-s-haplotypes-between-WPgP5iK4LK
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2003 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1024819129785
Publisher site
See Article on Publisher Site

Abstract

We have identified several interspecific pairs of S haplotypes having highly similar SRK and SP11/SCR sequences between Brassica oleracea and Brassica rapa. The recognition specificities of S haplotypes in these pairs were examined with three different methods. Stigmas of interspecific hybrids between an S-32 homozygote in B. oleracea and an S-60 homozygote in B. rapa, which were produced to avoid the interspecific incompatibility between the two species, showed incompatibility to the pollen of an S-8 homozygote in B. rapa and to the pollen of an S-15 homozygote in B. oleracea, while it showed compatibility to the pollen of other S haplotypes, suggesting B. oleracea S-32 and B. rapa S-60 have the same recognition specificity as B. rapa S-8 and B. oleracea S-15. Pollen grains of transgenic S-60 homozygous plants in B. rapa carrying a transgene of SP11-24 from B. oleracea were incompatible to B. rapa S-36 stigma, indicating that B. oleracea S-24 and B. rapa S-36 have the same recognition specificity. Application of the SP11 protein of B. rapa S-41 and S-47 onto the surface of B. oleracea S-64 stigmas and S-12 stigmas, respectively, resulted in the incompatibility reaction to pollen grains of another S haplotype, but application onto the stigmas of other S haplotypes did not, suggesting that B. oleracea S-64 stigmas and S-12 stigmas recognized the B. rapa SP11-41 and SP11-47 proteins as self SP11 proteins, respectively. Besides having evolutionary implications, finding of many interspecific pairs of S haplotypes can provide insight into the molecular mechanism of self-recognition. Comparing deduced amino-acid sequences of SP11 proteins and SRK proteins in the pairs, regions of SP11 and SRK important for self-recognition are discussed.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 7, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off