Access the full text.
Sign up today, get DeepDyve free for 14 days.
The Extrapolation Algorithm is a technique devised in 1962 for accelerating the rate of convergence of slowly converging Picard iterations for fixed point problems. Versions to this technique are now called Anderson Acceleration in the applied mathematics community and Anderson Mixing in the physics and chemistry communities, and these are related to several other methods extant in the literature. We seek here to broaden and deepen the conceptual foundations for these methods, and to clarify their relationship to certain iterative methods for root-finding problems. For this purpose, the Extrapolation Algorithm will be reviewed in some detail, and selected papers from the existing literature will be discussed, both from conceptual and implementation perspectives.
Numerical Algorithms – Springer Journals
Published: Jun 5, 2018
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.