Combining gene expression QTL mapping and phenotypic spectrum analysis to uncover gene regulatory relationships

Combining gene expression QTL mapping and phenotypic spectrum analysis to uncover gene regulatory... Gene expression QTL (eQTL) mapping can suggest candidate regulatory relationships between genes. Recent advances in mammalian phenotype annotation such as mammalian phenotype ontology (MPO) enable systematic analysis of the phenotypic spectrum subserved by many genes. In this study we combined eQTL mapping and phenotypic spectrum analysis to predict gene regulatory relationships. Five pairs of genes with similar phenotypic effects and potential regulatory relationships suggested by eQTL mapping were identified. Lines of evidence supporting some of the predicted regulatory relationships were obtained from biological literature. A particularly notable example is that promoter sequence analysis and real-time PCR assays support the predicted regulation of protein kinase C epsilon (Prkce) by cAMP responsive element binding protein 1 (Creb1). Our results show that the combination of gene eQTL mapping and phenotypic spectrum analysis may provide a valuable approach to uncovering gene regulatory relations underlying mammalian phenotypes. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mammalian Genome Springer Journals

Combining gene expression QTL mapping and phenotypic spectrum analysis to uncover gene regulatory relationships

Loading next page...
 
/lp/springer_journal/combining-gene-expression-qtl-mapping-and-phenotypic-spectrum-analysis-WnWV7S0kLi
Publisher
Springer-Verlag
Copyright
Copyright © 2006 by Springer Science+Business Media, Inc.
Subject
Life Sciences; Anatomy; Zoology; Cell Biology
ISSN
0938-8990
eISSN
1432-1777
D.O.I.
10.1007/s00335-005-0172-2
Publisher site
See Article on Publisher Site

Abstract

Gene expression QTL (eQTL) mapping can suggest candidate regulatory relationships between genes. Recent advances in mammalian phenotype annotation such as mammalian phenotype ontology (MPO) enable systematic analysis of the phenotypic spectrum subserved by many genes. In this study we combined eQTL mapping and phenotypic spectrum analysis to predict gene regulatory relationships. Five pairs of genes with similar phenotypic effects and potential regulatory relationships suggested by eQTL mapping were identified. Lines of evidence supporting some of the predicted regulatory relationships were obtained from biological literature. A particularly notable example is that promoter sequence analysis and real-time PCR assays support the predicted regulation of protein kinase C epsilon (Prkce) by cAMP responsive element binding protein 1 (Creb1). Our results show that the combination of gene eQTL mapping and phenotypic spectrum analysis may provide a valuable approach to uncovering gene regulatory relations underlying mammalian phenotypes.

Journal

Mammalian GenomeSpringer Journals

Published: Jun 12, 2006

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off