Combined planar laser-induced fluorescence–particle image velocimetry technique for velocity and temperature fields

Combined planar laser-induced fluorescence–particle image velocimetry technique for velocity... Combined use of particle image velocimetry (PIV) with planar laser-induced fluorescence (PLIF) was developed to measure both velocity and scalars such as temperature and concentration in thermo-fluid flow. PLIF, which uses a temperature-sensitive fluorescent dye excited by a laser light sheet, is a whole-field temperature diagnostic. The technique was applied to a thermal stratified flow and a plane impinging jet. The time evolutions of vortical and thermal structures were successfully obtained in order to understand the mechanism of the turbulent heat transfer in these flows. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Combined planar laser-induced fluorescence–particle image velocimetry technique for velocity and temperature fields

Loading next page...
 
/lp/springer_journal/combined-planar-laser-induced-fluorescence-particle-image-velocimetry-b8WWiwva6f
Publisher
Springer Journals
Copyright
Copyright © 2000 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s003480070015
Publisher site
See Article on Publisher Site

Abstract

Combined use of particle image velocimetry (PIV) with planar laser-induced fluorescence (PLIF) was developed to measure both velocity and scalars such as temperature and concentration in thermo-fluid flow. PLIF, which uses a temperature-sensitive fluorescent dye excited by a laser light sheet, is a whole-field temperature diagnostic. The technique was applied to a thermal stratified flow and a plane impinging jet. The time evolutions of vortical and thermal structures were successfully obtained in order to understand the mechanism of the turbulent heat transfer in these flows.

Journal

Experiments in FluidsSpringer Journals

Published: Dec 31, 2000

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off