Combined PIV/PLIF measurements of a steady density current front

Combined PIV/PLIF measurements of a steady density current front A novel method for combined particle image velocimetry and laser induced fluorescence is described and results from an experiment in a stratified flow are presented. A standard two-dimensional, one camera particle image velocimetry configuration is used, acquiring images of the seeding particles and the dye marking the current simultaneously and separating the two fields digitally. The implementation of the postprocessing method, its capabilities and the necessary conditions for its use are discussed in detail. The proposed method is applied to an arrested density current front. The front is made stationary by opposing a uniform velocity profile, obtained from the combination of a moving floor and the recirculation of fresh water in the channel. To improve the quality of the images, the current is made optically homogeneous by matching the refractivity index throughout the domain. Instantaneous and time averaged fields are obtained for both velocity and density. Simultaneous measurements of these fields provide insight in the mixing processes at the front of the density current. In particular persistent billow generation, similar to that found in shear layers and associated with Kelvin–Helmholtz instabilities, is observed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Combined PIV/PLIF measurements of a steady density current front

Loading next page...
 
/lp/springer_journal/combined-piv-plif-measurements-of-a-steady-density-current-front-s6L0mqFFbY
Publisher
Springer-Verlag
Copyright
Copyright © 2008 by Springer-Verlag
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-008-0556-7
Publisher site
See Article on Publisher Site

Abstract

A novel method for combined particle image velocimetry and laser induced fluorescence is described and results from an experiment in a stratified flow are presented. A standard two-dimensional, one camera particle image velocimetry configuration is used, acquiring images of the seeding particles and the dye marking the current simultaneously and separating the two fields digitally. The implementation of the postprocessing method, its capabilities and the necessary conditions for its use are discussed in detail. The proposed method is applied to an arrested density current front. The front is made stationary by opposing a uniform velocity profile, obtained from the combination of a moving floor and the recirculation of fresh water in the channel. To improve the quality of the images, the current is made optically homogeneous by matching the refractivity index throughout the domain. Instantaneous and time averaged fields are obtained for both velocity and density. Simultaneous measurements of these fields provide insight in the mixing processes at the front of the density current. In particular persistent billow generation, similar to that found in shear layers and associated with Kelvin–Helmholtz instabilities, is observed.

Journal

Experiments in FluidsSpringer Journals

Published: Sep 11, 2008

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off