Combined phosphor and CARS thermometry at the wall–gas interface of impinging flame and jet systems

Combined phosphor and CARS thermometry at the wall–gas interface of impinging flame and jet... For the determination of surface normal temperature gradients, a generic system was built up consisting of two opposed, vertical nozzles impinging onto a flat, horizontal copper plate. From below, the plate was heated by non-reacting, turbulent air jets (Re = 5,000) and by a laminar flame (λ = 0.7, Re = 350), respectively. For well-defined boundary conditions, the plate was cooled by a turbulent cold jet from above in both cases. Wall temperature as well as gas temperature distributions within and outside of the thermal boundary layer of the hot side of the system were determined. The radial surface temperature profile of the plate was measured by coating it with thermographic phosphors (TP), materials whose phosphorescence decay time is dependent on their temperature. The TP was excited electronically by a frequency-tripled Nd:YAG laser (355 nm). The temporal decay of the phosphorescence intensity was measured pointwise by a photomultiplier tube. In this case, the 659 nm emission line of Mg4FGeO6:Mn was monitored. Non-intrusive point measurements of the gas temperature close to the surface were performed by rovibrational coherent anti-Stokes Raman spectroscopy (CARS) of diatomic nitrogen. Beams from a seeded, frequency-doubled Nd:YAG laser (532 nm) and from a modeless broadband dye laser (607 nm) were phase-matched into a surface-parallel, planar-boxcars configuration. The temperature data could be collected as close as 300 μm to the surface. Thermographic phosphors as well as CARS proved to be consistent for wall temperature and boundary layer measurements in all test cases. The results and challenges of this approach are discussed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Combined phosphor and CARS thermometry at the wall–gas interface of impinging flame and jet systems

Loading next page...
 
/lp/springer_journal/combined-phosphor-and-cars-thermometry-at-the-wall-gas-interface-of-cUpvkaZYVL
Publisher
Springer-Verlag
Copyright
Copyright © 2007 by Springer-Verlag
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-007-0446-4
Publisher site
See Article on Publisher Site

Abstract

For the determination of surface normal temperature gradients, a generic system was built up consisting of two opposed, vertical nozzles impinging onto a flat, horizontal copper plate. From below, the plate was heated by non-reacting, turbulent air jets (Re = 5,000) and by a laminar flame (λ = 0.7, Re = 350), respectively. For well-defined boundary conditions, the plate was cooled by a turbulent cold jet from above in both cases. Wall temperature as well as gas temperature distributions within and outside of the thermal boundary layer of the hot side of the system were determined. The radial surface temperature profile of the plate was measured by coating it with thermographic phosphors (TP), materials whose phosphorescence decay time is dependent on their temperature. The TP was excited electronically by a frequency-tripled Nd:YAG laser (355 nm). The temporal decay of the phosphorescence intensity was measured pointwise by a photomultiplier tube. In this case, the 659 nm emission line of Mg4FGeO6:Mn was monitored. Non-intrusive point measurements of the gas temperature close to the surface were performed by rovibrational coherent anti-Stokes Raman spectroscopy (CARS) of diatomic nitrogen. Beams from a seeded, frequency-doubled Nd:YAG laser (532 nm) and from a modeless broadband dye laser (607 nm) were phase-matched into a surface-parallel, planar-boxcars configuration. The temperature data could be collected as close as 300 μm to the surface. Thermographic phosphors as well as CARS proved to be consistent for wall temperature and boundary layer measurements in all test cases. The results and challenges of this approach are discussed.

Journal

Experiments in FluidsSpringer Journals

Published: Dec 22, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off