Combined numerical model of currents, waves, and sediment transport in Lake Donuzlav

Combined numerical model of currents, waves, and sediment transport in Lake Donuzlav We present a numerical model of the dynamics of Lake Donuzlav, which enables one to perform simultaneous numerical analyses of the currents, sea level, waves, and sediment transport. The model is based on the hydrodynamic block and the spectral wave model. For typical storm situations, we study the specific features of the integral circulation of waters and the three-dimensional structure of currents, investigate the wind-induced wave fields, and evaluate the flows of sediments and deformations of the bottom. The presence of intense eddy structures is revealed in the field of currents caused by the bottom topography. A significant intensification of waves in the south part of the lake is established in the case of penetration of storm waves through the strait. It is shown that the account of waves leads to qualitative changes in the structure of circulation in the lake and to the formation of well-pronounced areas of wave-induced elevations and lowerings of the sea level. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Oceanography Springer Journals

Combined numerical model of currents, waves, and sediment transport in Lake Donuzlav

Loading next page...
 
/lp/springer_journal/combined-numerical-model-of-currents-waves-and-sediment-transport-in-140dcNGuYG
Publisher
Springer Journals
Copyright
Copyright © 2006 by Springer Science+Business Media, Inc.
Subject
Earth Sciences; Oceanography; Remote Sensing/Photogrammetry; Atmospheric Sciences; Climate Change; Environmental Physics
ISSN
0928-5105
eISSN
0928-5105
D.O.I.
10.1007/s11110-006-0019-8
Publisher site
See Article on Publisher Site

Abstract

We present a numerical model of the dynamics of Lake Donuzlav, which enables one to perform simultaneous numerical analyses of the currents, sea level, waves, and sediment transport. The model is based on the hydrodynamic block and the spectral wave model. For typical storm situations, we study the specific features of the integral circulation of waters and the three-dimensional structure of currents, investigate the wind-induced wave fields, and evaluate the flows of sediments and deformations of the bottom. The presence of intense eddy structures is revealed in the field of currents caused by the bottom topography. A significant intensification of waves in the south part of the lake is established in the case of penetration of storm waves through the strait. It is shown that the account of waves leads to qualitative changes in the structure of circulation in the lake and to the formation of well-pronounced areas of wave-induced elevations and lowerings of the sea level.

Journal

Physical OceanographySpringer Journals

Published: Sep 7, 2006

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off