Combined numerical model of currents, waves, and sediment transport in Lake Donuzlav

Combined numerical model of currents, waves, and sediment transport in Lake Donuzlav We present a numerical model of the dynamics of Lake Donuzlav, which enables one to perform simultaneous numerical analyses of the currents, sea level, waves, and sediment transport. The model is based on the hydrodynamic block and the spectral wave model. For typical storm situations, we study the specific features of the integral circulation of waters and the three-dimensional structure of currents, investigate the wind-induced wave fields, and evaluate the flows of sediments and deformations of the bottom. The presence of intense eddy structures is revealed in the field of currents caused by the bottom topography. A significant intensification of waves in the south part of the lake is established in the case of penetration of storm waves through the strait. It is shown that the account of waves leads to qualitative changes in the structure of circulation in the lake and to the formation of well-pronounced areas of wave-induced elevations and lowerings of the sea level. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Oceanography Springer Journals

Combined numerical model of currents, waves, and sediment transport in Lake Donuzlav

Loading next page...
 
/lp/springer_journal/combined-numerical-model-of-currents-waves-and-sediment-transport-in-140dcNGuYG
Publisher
Kluwer Academic Publishers-Consultants Bureau
Copyright
Copyright © 2006 by Springer Science+Business Media, Inc.
Subject
Earth Sciences; Oceanography; Remote Sensing/Photogrammetry; Atmospheric Sciences; Climate Change; Environmental Physics
ISSN
0928-5105
eISSN
0928-5105
D.O.I.
10.1007/s11110-006-0019-8
Publisher site
See Article on Publisher Site

Abstract

We present a numerical model of the dynamics of Lake Donuzlav, which enables one to perform simultaneous numerical analyses of the currents, sea level, waves, and sediment transport. The model is based on the hydrodynamic block and the spectral wave model. For typical storm situations, we study the specific features of the integral circulation of waters and the three-dimensional structure of currents, investigate the wind-induced wave fields, and evaluate the flows of sediments and deformations of the bottom. The presence of intense eddy structures is revealed in the field of currents caused by the bottom topography. A significant intensification of waves in the south part of the lake is established in the case of penetration of storm waves through the strait. It is shown that the account of waves leads to qualitative changes in the structure of circulation in the lake and to the formation of well-pronounced areas of wave-induced elevations and lowerings of the sea level.

Journal

Physical OceanographySpringer Journals

Published: Sep 7, 2006

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off