Combined effects of hypoxia and excess Mn2+ on oxidative stress and antioxidant enzymes in tomato seedlings

Combined effects of hypoxia and excess Mn2+ on oxidative stress and antioxidant enzymes in tomato... Effects of high level of Mn2+ on the changes in ROS generation, root cell viability, antioxidant enzyme activities, and related gene expression in tomato (Solanum lycopersicum L., cv. Zhongza 9) seedlings were studied under normoxic and hypoxia conditions. Mn2+ concentrations, ranged between 10 and 200 μM, led to significantly higher activities of superoxide dismutase (SOD), peroxidase (POD), ascorbate peroxidase (APOD), glutathione reductase (GR), and also ascorbic acid (AsA) content in leaves and roots, improved root cell viability, and decreased O 2 ·− accumulation compared with the higher Mn2+ level under hypoxia stress, which indicated that low Mn2+ could eliminate the active oxygen and protect the membrane lipid from the hypoxia hurt. When the concentration of Mn2+ reached 400–600 μM under hypoxia stress, the activities of SOD, POD, APOD, and GR and AsA content were decreased remarkably. In contrast, the MDA content was increased at the higher Mn2+ concentration. A number of antioxidant-related genes showed high expression at the lower level of Mn2+. The expression levels of SOD, POD, CAT, APOD, and GR genes were 7.95, 5.27, 3.18, 5.54, and 8.81 times compared to control, respectively. These results illustrated that the appropriate amount of Mn2+ could alleviate the detrimental effects of hypoxia stress, but reversely, the high level of Mn2+ just aggravated the existing damage to the tomato seedlings. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Combined effects of hypoxia and excess Mn2+ on oxidative stress and antioxidant enzymes in tomato seedlings

Loading next page...
 
/lp/springer_journal/combined-effects-of-hypoxia-and-excess-mn2-on-oxidative-stress-and-s0paVZLLH7
Publisher
SP MAIK Nauka/Interperiodica
Copyright
Copyright © 2012 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Physiology; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S102144371205010X
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial