Combination of glow-discharge and arc plasmas for CF4 abatement

Combination of glow-discharge and arc plasmas for CF4 abatement Decomposition of CF4 by glow-discharge and arc plasmas was studied using a tubular quartz reactor, a disk type, and a T-type quartz reactor. The effects of different metal electrodes, input voltage, and reactor type on the efficiency of CF4 total destruction (DRE) were studied. The T-shape reactor was more efficient in CF4 destruction than either the disk or tubular type due to a combined effect of glow discharge and arc plasmas. Several hydrogen and oxygen sources, such as H2O, H2, O2, and CH4, were used to convert CF4. Using H2 and O2 as the hydrogen and oxygen sources presented better DRE than using H2O. The effect of different hydrogen and oxygen sources on the conversion of CF4 followed the trend: (H2 + O2) > (CH4 + O2) > H2O. The maximum DRE of 95% was observed with 0.5% CF4 using H2 and O2. A mass spectrometer and an emission spectroscope equipped with a charge-coupled detector (CCD) were used to characterize the products and intermediates. Mass spectrometric studies indicated that the reaction products were HF, CO2, and trace amounts of NO. N2 first negative and second positive emission lines were observed in the glow discharge plasmas as well as in the arc plasmas of N2. However, C and F intermediates were observed only in arc plasmas of CF4. Reactions occurring in the glow discharge plasmas and arcs seem to follow different mechanisms. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals
Loading next page...
 
/lp/springer_journal/combination-of-glow-discharge-and-arc-plasmas-for-cf4-abatement-JXU0rCxWre
Publisher
Brill Academic Publishers
Copyright
Copyright © 2001 by VSP 2001
Subject
Chemistry; Inorganic Chemistry; Physical Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1163/156856701753536697
Publisher site
See Article on Publisher Site

Abstract

Decomposition of CF4 by glow-discharge and arc plasmas was studied using a tubular quartz reactor, a disk type, and a T-type quartz reactor. The effects of different metal electrodes, input voltage, and reactor type on the efficiency of CF4 total destruction (DRE) were studied. The T-shape reactor was more efficient in CF4 destruction than either the disk or tubular type due to a combined effect of glow discharge and arc plasmas. Several hydrogen and oxygen sources, such as H2O, H2, O2, and CH4, were used to convert CF4. Using H2 and O2 as the hydrogen and oxygen sources presented better DRE than using H2O. The effect of different hydrogen and oxygen sources on the conversion of CF4 followed the trend: (H2 + O2) > (CH4 + O2) > H2O. The maximum DRE of 95% was observed with 0.5% CF4 using H2 and O2. A mass spectrometer and an emission spectroscope equipped with a charge-coupled detector (CCD) were used to characterize the products and intermediates. Mass spectrometric studies indicated that the reaction products were HF, CO2, and trace amounts of NO. N2 first negative and second positive emission lines were observed in the glow discharge plasmas as well as in the arc plasmas of N2. However, C and F intermediates were observed only in arc plasmas of CF4. Reactions occurring in the glow discharge plasmas and arcs seem to follow different mechanisms.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Oct 7, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off