Colonization of plant roots and enhanced atrazine degradation by a strain of Arthrobacter ureafaciens

Colonization of plant roots and enhanced atrazine degradation by a strain of Arthrobacter... Our previous research found that culturable atrazine degraders associated with maize roots were dominated by genetically similar strains of Arthrobacter ureafaciens, suggesting their rhizosphere competence. The present study aimed to assess the root-colonizing capacity of strain A. ureafaciens DnL1-1 and to evaluate consequent root-associated degradation of atrazine. A soil-sand assay and pot experiments provided evidence that A. ureafaciens DnL1-1 competitively colonized roots of maize, wheat, and alfalfa following seed inoculation. Atrazine was not absolutely required but promoted colonization of plant roots by the bacterium. In association with plants, A. ureafaciens DnL1-1 enhanced the degradation of atrazine and strongly reduced accumulation of its dealkylated metabolites. Our results show that after low-level inoculation of seeds, the bacterium A. ureafaciens DnL1-1 can establish root populations sufficient for the rapid degradation of atrazine in soil that makes it a promising bioremediation agent which can be easily applied to large areas of polluted soil. Application of the root-colonizing, atrazine-degrading Arthrobacter bacteria as seed inoculants may be a reliable remediation strategy for soils contaminated with chlorinated s-triazines and their degradation products. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Microbiology and Biotechnology Springer Journals

Colonization of plant roots and enhanced atrazine degradation by a strain of Arthrobacter ureafaciens

Loading next page...
 
/lp/springer_journal/colonization-of-plant-roots-and-enhanced-atrazine-degradation-by-a-UR2OJAKeNE
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by The Author(s)
Subject
Life Sciences; Microbiology; Microbial Genetics and Genomics; Biotechnology
ISSN
0175-7598
eISSN
1432-0614
D.O.I.
10.1007/s00253-017-8405-3
Publisher site
See Article on Publisher Site

Abstract

Our previous research found that culturable atrazine degraders associated with maize roots were dominated by genetically similar strains of Arthrobacter ureafaciens, suggesting their rhizosphere competence. The present study aimed to assess the root-colonizing capacity of strain A. ureafaciens DnL1-1 and to evaluate consequent root-associated degradation of atrazine. A soil-sand assay and pot experiments provided evidence that A. ureafaciens DnL1-1 competitively colonized roots of maize, wheat, and alfalfa following seed inoculation. Atrazine was not absolutely required but promoted colonization of plant roots by the bacterium. In association with plants, A. ureafaciens DnL1-1 enhanced the degradation of atrazine and strongly reduced accumulation of its dealkylated metabolites. Our results show that after low-level inoculation of seeds, the bacterium A. ureafaciens DnL1-1 can establish root populations sufficient for the rapid degradation of atrazine in soil that makes it a promising bioremediation agent which can be easily applied to large areas of polluted soil. Application of the root-colonizing, atrazine-degrading Arthrobacter bacteria as seed inoculants may be a reliable remediation strategy for soils contaminated with chlorinated s-triazines and their degradation products.

Journal

Applied Microbiology and BiotechnologySpringer Journals

Published: Jul 12, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off