Collocated Multi-user Gestural Interactions with Unmodified Wearable Devices

Collocated Multi-user Gestural Interactions with Unmodified Wearable Devices Many real-life scenarios can benefit from both physical proximity and natural gesture interaction. In this paper, we explore shared collocated interactions on unmodified wearable devices. We introduce an interaction technique which enables a small group of people to interact using natural gestures. The proximity of users and devices is detected through acoustic ranging using inaudible signals, while in-air hand gestures are recognized from three-axis accelerometers. The underlying wireless communication between the devices is handled over Bluetooth for scalability and extensibility. We present (1) an overview of the interaction technique and (2) an extensive evaluation using unmodified, off-the-shelf, mobile, and wearable devices which show the feasibility of the method. Finally, we demonstrate the resulting design space with three examples of multi-user application scenarios. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Augmented Human Research Springer Journals

Collocated Multi-user Gestural Interactions with Unmodified Wearable Devices

Loading next page...
 
/lp/springer_journal/collocated-multi-user-gestural-interactions-with-unmodified-wearable-mVRr22k80C
Publisher
Springer Singapore
Copyright
Copyright © 2017 by Springer Nature Singapore Pte Ltd.
Subject
Engineering; Computational Intelligence; Biomedical Engineering; Robotics and Automation; Cognitive Psychology; Human Physiology; User Interfaces and Human Computer Interaction
ISSN
2365-4317
eISSN
2365-4325
D.O.I.
10.1007/s41133-017-0009-z
Publisher site
See Article on Publisher Site

Abstract

Many real-life scenarios can benefit from both physical proximity and natural gesture interaction. In this paper, we explore shared collocated interactions on unmodified wearable devices. We introduce an interaction technique which enables a small group of people to interact using natural gestures. The proximity of users and devices is detected through acoustic ranging using inaudible signals, while in-air hand gestures are recognized from three-axis accelerometers. The underlying wireless communication between the devices is handled over Bluetooth for scalability and extensibility. We present (1) an overview of the interaction technique and (2) an extensive evaluation using unmodified, off-the-shelf, mobile, and wearable devices which show the feasibility of the method. Finally, we demonstrate the resulting design space with three examples of multi-user application scenarios.

Journal

Augmented Human ResearchSpringer Journals

Published: Aug 8, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off