Collision avoidance for mobile robots with limited sensing and limited information about moving obstacles

Collision avoidance for mobile robots with limited sensing and limited information about moving... This paper addresses the problem of safely navigating a mobile robot with limited sensing capability and limited information about stationary and moving obstacles. We consider two sensing limitations: blind spots between sensors and limited sensing range. We study three notions of safety: (1) static safety, which ensures collision-freedom with respect to stationary obstacles, (2) passive safety, which ensures collision-freedom while the robot is moving, and (3) passive friendly safety, which ensures the robot leaves sufficient room for obstacles to avoid collisions. We present a runtime approach, based on the Simplex architecture, to ensure these safety properties. To obtain the switching logic for the Simplex architecture, we identify a set of constraints on the sensor readings whose satisfaction at time t guarantees that the robot will still be able to ensure the safety property at time $$t + {\varDelta } t$$ t + Δ t , regardless of how it navigates during that time interval. Here, $${\varDelta } t$$ Δ t is the period with which the switching logic is executed and is bounded by a function of the maximum velocity and braking power of the robot and the range of the sensors. To the best of our knowledge, this work is the first that provides runtime assurance that an autonomous mobile robot with limited sensing can navigate safely with limited information about obstacles. The limited information about obstacles is used to derive an over-approximation of the set of nearby obstacle points. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Formal Methods in System Design Springer Journals

Collision avoidance for mobile robots with limited sensing and limited information about moving obstacles

Loading next page...
 
/lp/springer_journal/collision-avoidance-for-mobile-robots-with-limited-sensing-and-limited-ZdM2lpDriO
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media New York
Subject
Engineering; Circuits and Systems; Electrical Engineering; Computer-Aided Engineering (CAD, CAE) and Design; Software Engineering/Programming and Operating Systems
ISSN
0925-9856
eISSN
1572-8102
D.O.I.
10.1007/s10703-016-0265-4
Publisher site
See Article on Publisher Site

Abstract

This paper addresses the problem of safely navigating a mobile robot with limited sensing capability and limited information about stationary and moving obstacles. We consider two sensing limitations: blind spots between sensors and limited sensing range. We study three notions of safety: (1) static safety, which ensures collision-freedom with respect to stationary obstacles, (2) passive safety, which ensures collision-freedom while the robot is moving, and (3) passive friendly safety, which ensures the robot leaves sufficient room for obstacles to avoid collisions. We present a runtime approach, based on the Simplex architecture, to ensure these safety properties. To obtain the switching logic for the Simplex architecture, we identify a set of constraints on the sensor readings whose satisfaction at time t guarantees that the robot will still be able to ensure the safety property at time $$t + {\varDelta } t$$ t + Δ t , regardless of how it navigates during that time interval. Here, $${\varDelta } t$$ Δ t is the period with which the switching logic is executed and is bounded by a function of the maximum velocity and braking power of the robot and the range of the sensors. To the best of our knowledge, this work is the first that provides runtime assurance that an autonomous mobile robot with limited sensing can navigate safely with limited information about obstacles. The limited information about obstacles is used to derive an over-approximation of the set of nearby obstacle points.

Journal

Formal Methods in System DesignSpringer Journals

Published: Jan 5, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off