Coherent feedback enabled distributed generation ofentanglement between propagating Gaussian fields

Coherent feedback enabled distributed generation ofentanglement between propagating Gaussian fields In this paper, we show how Einstein–Podolsky–Rosen-like entanglement between a pair of spatially separated propagating continuous-mode Gaussian fields can be generated via a coherent feedback loop that connects two spatially distant nondegenerate optical parametric amplifiers (NOPAs) over two transmission channels. In particular, the scheme generates entanglement in a distributed manner using spatially distributed resources. It is shown that similar to a single NOPA, the coherent feedback scheme has parameters that determine the achievable frequency-dependent two-mode squeezing and entanglement bandwidth between the pair of continuous-mode fields. It is also shown that in ideal scenarios, the feedback connection is able to yield an increase in the quality of the entanglement while consuming less power, compared to conventional distribution of entanglement using a single NOPA and a two-cascaded NOPA system. Furthermore, in contrast to the two conventional systems, under the same pump power, the coherent feedback system provides more entanglement in the presence of transmission losses, which indicates that the feedback scheme increases tolerance to transmission losses. Quantum Information Processing Springer Journals

Coherent feedback enabled distributed generation ofentanglement between propagating Gaussian fields

Loading next page...
Springer US
Copyright © 2014 by Springer Science+Business Media New York
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
Publisher site
See Article on Publisher Site


  • Experimental demonstration of coherent feedback control on optical field squeezing
    Iida, S; Yukawa, M; Yonezawa, H; Yamamoto, N; Furusawa, A
  • Coherent controllers for optical-feedback cooling of quantum oscillators
    Hamerly, R; Mabuchi, H

You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial