Coexpression patterns indicate that GPI-anchored non-specific lipid transfer proteins are involved in accumulation of cuticular wax, suberin and sporopollenin

Coexpression patterns indicate that GPI-anchored non-specific lipid transfer proteins are... The non-specific lipid transfer proteins (nsLTP) are unique to land plants. The nsLTPs are characterized by a compact structure with a central hydrophobic cavity and can be classified to different types based on sequence similarity, intron position or spacing between the cysteine residues. The type G nsLTPs (LTPGs) have a GPI-anchor in the C-terminal region which attaches the protein to the exterior side of the plasma membrane. The function of these proteins, which are encoded by large gene families, has not been systematically investigated so far. In this study we have explored microarray data to investigate the expression pattern of the LTPGs in Arabidopsis and rice. We identified that the LTPG genes in each plant can be arranged in three expression modules with significant coexpression within the modules. According to expression patterns and module sizes, the Arabidopsis module AtI is functionally equivalent to the rice module OsI, AtII corresponds to OsII and AtIII is functionally comparable to OsIII. Starting from modules AtI, AtII and AtIII we generated extended networks with Arabidopsis genes coexpressed with the modules. Gene ontology analyses of the obtained networks suggest roles for LTPGs in the synthesis or deposition of cuticular waxes, suberin and sporopollenin. The AtI-module is primarily involved with cuticular wax, the AtII-module with suberin and the AtIII-module with sporopollenin. Further transcript analysis revealed that several transcript forms exist for several of the LTPG genes in both Arabidopsis and rice. The data suggests that the GPI-anchor attachment and localization of LTPGs may be controlled to some extent by alternative splicing. Plant Molecular Biology Springer Journals

Coexpression patterns indicate that GPI-anchored non-specific lipid transfer proteins are involved in accumulation of cuticular wax, suberin and sporopollenin

Loading next page...
Springer Netherlands
Copyright © 2013 by Springer Science+Business Media Dordrecht
Life Sciences; Plant Sciences; Biochemistry, general; Plant Pathology
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial