Coexpression of a defensin gene and a thionin-like gene via different signal transduction pathways in pepper and Colletotrichum gloeosporioides interactions

Coexpression of a defensin gene and a thionin-like gene via different signal transduction... The anthracnose fungus, Colletotrichum gloeosporioides, interacts incompatibly with the ripe fruit of pepper (Capsicum annuum). It interacts compatibly with the unripe-mature fruit. We isolated a defensin gene, j1-1, and a thionin-like gene, PepThi, expressed in the incompatible interaction by using an mRNA differential display method. Both genes were developmentally regulated during fruit ripening, organ-specifically regulated, and differentially induced during the compatible and incompatible interactions. Expression of the PepThi gene was rapidly induced in the incompatible-ripe fruit upon fungal infection. The fungus-inducible PepThi gene is highly inducible only in the unripe fruit by salicylic acid. In both ripe and unripe fruit, it was induced by wounding, but not by jasmonic acid. Expression of the j1-1 gene is enhanced by jasmonic acid in the unripe fruit but suppressed in the ripe fruit. These results suggest that both small and cysteine-rich protein genes are induced via different signal transduction pathways during fruit ripening to protect the reproductive organs against biotic and abiotic stresses. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Coexpression of a defensin gene and a thionin-like gene via different signal transduction pathways in pepper and Colletotrichum gloeosporioides interactions

Loading next page...
 
/lp/springer_journal/coexpression-of-a-defensin-gene-and-a-thionin-like-gene-via-different-ovuCbOg0eC
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 1999 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1006336203621
Publisher site
See Article on Publisher Site

Abstract

The anthracnose fungus, Colletotrichum gloeosporioides, interacts incompatibly with the ripe fruit of pepper (Capsicum annuum). It interacts compatibly with the unripe-mature fruit. We isolated a defensin gene, j1-1, and a thionin-like gene, PepThi, expressed in the incompatible interaction by using an mRNA differential display method. Both genes were developmentally regulated during fruit ripening, organ-specifically regulated, and differentially induced during the compatible and incompatible interactions. Expression of the PepThi gene was rapidly induced in the incompatible-ripe fruit upon fungal infection. The fungus-inducible PepThi gene is highly inducible only in the unripe fruit by salicylic acid. In both ripe and unripe fruit, it was induced by wounding, but not by jasmonic acid. Expression of the j1-1 gene is enhanced by jasmonic acid in the unripe fruit but suppressed in the ripe fruit. These results suggest that both small and cysteine-rich protein genes are induced via different signal transduction pathways during fruit ripening to protect the reproductive organs against biotic and abiotic stresses.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 16, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off