Coexpression network analysis associated with call of rice seedlings for encountering heat stress

Coexpression network analysis associated with call of rice seedlings for encountering heat stress Coexpression network analysis is useful tool for identification of functional association of coexpressed genes. We developed a coexpression network of rice from heat stress transcriptome data. Global transcriptome of rice leaf tissues was performed by microarray at three time points—post 10 and 60 min heat stress at 42 °C and 30 min recovery at 26 °C following 60 min 42 °C heat stress to investigate specifically the early events in the heat stress and recovery response. The transcriptome profile was significantly modulated within 10 min of heat stress. Strikingly, the number of up-regulated genes was higher than the number of down-regulated genes in 10 min of heat stress. The enrichment of GO terms protein kinase activity/protein serine threonine kinase activity, response to heat and reactive oxygen species in up-regulated genes after 10 min signifies the role of signal transduction events and reactive oxygen species during early heat stress. The enrichment of transcription factor (TF) binding sites for heat shock factors, bZIPs and DREBs coupled with up-regulation of TFs of different families suggests that the heat stress response in rice involves integration of various regulatory networks. The interpretation of microarray data in the context of coexpression network analysis identified several functionally correlated genes consisting of previously documented heat upregulated genes as well as new genes that can be implicated in heat stress. Based on the findings on parallel analysis of growth of seedlings, associated changes in transcripts of selected Hsps, genome-wide microarray profiling and the coexpression network analysis, this study is a step forward in understanding heat response of rice, the world’s most important food crop. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Coexpression network analysis associated with call of rice seedlings for encountering heat stress

Loading next page...
 
/lp/springer_journal/coexpression-network-analysis-associated-with-call-of-rice-seedlings-zy5UKbEj0l
Publisher
Springer Netherlands
Copyright
Copyright © 2013 by Springer Science+Business Media Dordrecht
Subject
Life Sciences; Plant Sciences; Biochemistry, general; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-013-0123-3
Publisher site
See Article on Publisher Site

Abstract

Coexpression network analysis is useful tool for identification of functional association of coexpressed genes. We developed a coexpression network of rice from heat stress transcriptome data. Global transcriptome of rice leaf tissues was performed by microarray at three time points—post 10 and 60 min heat stress at 42 °C and 30 min recovery at 26 °C following 60 min 42 °C heat stress to investigate specifically the early events in the heat stress and recovery response. The transcriptome profile was significantly modulated within 10 min of heat stress. Strikingly, the number of up-regulated genes was higher than the number of down-regulated genes in 10 min of heat stress. The enrichment of GO terms protein kinase activity/protein serine threonine kinase activity, response to heat and reactive oxygen species in up-regulated genes after 10 min signifies the role of signal transduction events and reactive oxygen species during early heat stress. The enrichment of transcription factor (TF) binding sites for heat shock factors, bZIPs and DREBs coupled with up-regulation of TFs of different families suggests that the heat stress response in rice involves integration of various regulatory networks. The interpretation of microarray data in the context of coexpression network analysis identified several functionally correlated genes consisting of previously documented heat upregulated genes as well as new genes that can be implicated in heat stress. Based on the findings on parallel analysis of growth of seedlings, associated changes in transcripts of selected Hsps, genome-wide microarray profiling and the coexpression network analysis, this study is a step forward in understanding heat response of rice, the world’s most important food crop.

Journal

Plant Molecular BiologySpringer Journals

Published: Aug 24, 2013

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off